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COMMUNICATION THROUGH NOISY, RANDOM-MULTIPATH CHANNELS

by
GEORGE LEWIS TURIN

Submitted to the Department of Electrical Engineering on May 14, 1956
in partial fulfillment of the requirements for the degree of Doctor of
Science -

ABSTRACT

Statistical methods are applied in this paper to the problem of com-
munication through a multipath channel which has random (or unknown)
path characteristics, and which has additive random noise present at
the receiver end. In an introductory chapter, the transmitter of a sys-
tem for use with such a channel is defined as one which encodes the out-
put of an information source into a sequence of selections from a finite
set of message waveforms, and transmits this sequence into the channel.
The receiver is specified as one which, on reception of the channel-
perturbed transmitted signal, computes a posteriori probabilities of the
possible transmitted message-waveform sequences, and, on the basis of
these, supplies guesses at the information source output to an information
user.

The first problem with which the paper concerns itself is that of est-
ablishing an a priori statistical model of the channel. It is shown that
this a priori model is often iradequate, and measurement techniques for
obtaining further (a posteriori) information about the channel are dis-
cussed. -

Next, the problem of determining the operational form of the receiver's

- probability computer is investigated. Since this form depends on the amount
. of information about the channel which is available to the receiver, several

results are obtained, one for each of several assumptions concerning the
state of the receiver's knowledge of the channel. Probabilities of error cor-
responding to two of these probability-computer forms are evaluated for the
special case in which there are only two equi-energy, equiprobable message
waveforms and only one path; and for which the receiver makes its guess,
for each message waveform in a sequence, by choosing the waveform which
is a posteriori most probable.

" The problem of generation of an optimal set of message waveforms is
then considered, in particular, for the special case described above. In
this case, the optimization condition consists in the adjustment of the cross-
correlation coefficient of the two message waveforms.

A commentary on possible future extensions of the present work concludes
the paper.

Thesis Supervisor: Dr. W. B. Davenport, Jr.
Title: Assistant Division Leader, Lincoln
Laboratory, M.I.T.
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CHAPTER I: INTRODUCTION

In recent years the problem of the design of systems for communication
through randomly-disturbed channels has been approached from a more funda-
mental point of view than was previously employed. It was recognized that
the essential feature of the problem is the statistical nature of the disturbance,
and that, hence, statistical methods must be used in system design. The

vanguard of this approach included Wiener(l), Shannon(z’ 3)

and Davies(4’ 5), to name but a very few.

, and Woodward

Attention has heretofore been focused almost exclusively on additively-
disturbed channels, that is, channels in which the only random disturbance is
one added to the transmitted signal. The more difficult problem of communi-
cation through channels which are not purely additively disturbed has, on the
other hand, received relatively little attention. It is the purpose of this paper
to consider, from a statistical point of view, the problem of communication
through one type of non-additively-disturbed channel: a random-multipath
channel, in which a signal may travel from transmitter to receiver by way of
many paths, which have randomly-distributed characteristics. The channel
will also be considered to be noisy, with the noise added at the receiver end.
Other statistical investigations relating to this type of channel have been made

(6,7,8) (9).

by Price and by Root and Pitcher The present work, in fact, is

closely related to that of Price in some aspects. *

A. Model of System to be Considered.

The generic model of the communication system to be considered is shown

in Figure 1-1. Like Shannon's model(lo), it consists of an information source,

a transmitter, a channel, a receiver, and an information user. We shall take

# See especially Chapter III, Sections A and B.
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the information source to be one which produces as its output a sequence
of symbols drawn from a finite alphabet; it may be, for example, a printed
English text. We define the function of the transmitter to be, first, the

encoding of the information source output into a sequence of message wave-

forms, which are drawn from a finite set of finite-duration message wave-
forms; and, second, the transmission of this message-waveform sequence
into the channel. The set of message waveforms may be, for example, a
set of pulsed sine-waves of different frequencies, as in frequency-shift
telegraphy. In the channel the transmitted message-waveform sequence,
or signal, is distorted, first by transmission through a random-multipath
medium, and then by the addition of random noise at the receiver input.
The received signal, then, generally does not provide the receiver with an
unequivocal indication of the transmitted message-waveform sequence.
The receiver must make do with an imperfect situation by guessing at the
transmitted sequence on the basis of some operation on the received signal.
This guess, or perhaps a set of guesses, is presented to the infornation
user,

A closer analysis of the encoding function of the transmitter leads to
its division into two parts. The first of these, which is performed by the
encoder of Figure 1-1, consists in the one-to-one translation of the infor-
‘mation source output, which is a sequence of symbols drawn from an alphabet
of say Q letters, into a sequence of new symbols drawn from an alphabet of
say M letters. Possible purposes of this translation may be, for instance:
reduction of alphabet size, reduction of redundancy(ll), insertion of error-
detection or error-correction symbols. An example of the first purpose

is the teletype code, in which written text is translated into a two -symbol
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("mark'" and ''space'') alphabet. The second purpose is illustrated by the
optimum code of Huffman(lz). An example of the third is given in a paper -
by Hamming(l3). Generally, the encoder may require a statistical know-
ledge of the information source (e.g., letter frequencies, digram
frequencies, etc.), and this is indicated in Figure 1-1,

Up until now we have considered only abstract alphabets. That is,
the symbols of both the M- and Q-alphabets are so far merely abétract
ink-marks, and as such are hardly eligible for transmission through the
channel. The second part of the encoding function, then, consists in the
generation of a set of M distinct physical waveforms to take the place.of
the abstract symbols of the M-alphabet. This is by no means a trivial
operation, for not any arbitrary set of waveforms will do; they must be
chosen to combat the perturbing effect of the channel effectively. For
example, a set of sine waves of the same frequency, but of different phases,
would be an absurd selection if the channel contains a random phase -
shifting device. Essentially, the second part of the encoding function of the
transmitter is concerned with the generation of a suitable '"codebook'" for

use by the encoder. This is done by the message-waveform generator,

which requires a statistical knowledge of the channel, as shown in Figure 1-1.
From the redundancy point of view, the entire encoding operation con-
sists in the replacement of the natural redundancy of the information-source
sequence by redundancy of a kind more suitable for use with the given channel.
In this sense, the function of the transmitter is to ""match' the information
source to the channel.
The function of the receiver may also be divided into several parts.
The first of these is postulated to be the computation of the a posteriori

probabilities of the various possible message-waveform sequences. As is
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noted by Woodward and Davies(4), all of the information in the received
signal is implicit in these probabilities, so that this computation merely
reduces the available data (i.e., the received signal) to an alternate form;
there is no loss of information involved. In order to carry through the

computation, the probability computer must have available a statistical

knowledge of the source (i.e., the a priori probabilities of the 'various
possible message-waveform sequences) and of the channel, and a copy of
the transmitter's '"codebook'" of message waveforms.

The complete a posteriori distribution as available at the output of the
probability computer is not in itself useful to the information user; the user
requires a receiver output which is in the same form as the transmitter
input--for example, printed English text. Thus, the receiver is called upon
to guess at the transmitted message-waveform sequence on the basis of its

a posteriori knowledge. This is done by the decision circuit, whose output

is hence a sequence of symbols from the abstract M-alphabet, or perhaps
a set of a few highly-probable sequences. This guessing operation of course
involves a loss of information.

Finally, the output of the decision circuit is translated back into a
sequence (or sequences) of Q-alphabet symbols by the decoder, which is the
exact inverse of the encoder. The decoder output is supplied to the infor-

mation user.

B. System Design Problems.

The above description of the functions of the transmitter and receiver
automatically brings to mind certain questions, which may be phrased as
follows:

1) How does one design the encoder (and hence the decoder)?
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2) What are ""suitable' ‘message-waveforms, or equivalently, how

does one design the message-waveform generator ?

3) What is the operational form of the probability computer ?

4) On what basis should the decision circuit make its guesses ?

There is a fifth question which, although not as immediately apparent, is
just as important:

5) In what form is statistical knowledge of the channel availéble to the

receiver and transmitter ?

These questions are not really completely independent of one another, as
might be implied from their being asked separately. However, as in-most
mathematical investigations, one finds it expedient first to break the problem
up into nearly-independent parts, and to investigate each cne separately, in
each case assuming solutions to the others. In this way, one hopes to gain
an insight into the overall problem. The parts defined by the above questions
seem to be natural ones for our present problem.

We shall not investigate questions (1) and (4) in this work. However,
whenever it is necessary, we shall assume that the encoder and the decision
circuit satisfy, respectively, the following conditions:

1) the symbols of the enceder output-sequence are independent of each

other, and

2) the decision circuit chooses the a posteriori most probable sequence.

As for the remaining questions, they will be considered in the order (5),
(3), (2). Chapter Ii will be devoted to ﬂme establishment of a model for
the channel, and of ways of measuring the characteristics of this model.
Chapter III will be concerned with the determination of the operational form

of the probability computer under various assumptions concerning the amount
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of information about the channel which is available at the receiver. The
probability of error corresponding to two of these probability-computer forms
will be derived in Chapter IV for a simple special case. The question of
message-waveform generation will then be discussed in Chapter V for this
special case. Finally, Chapter VI will be devoted to a commentary on the

results obtained, and to suggestions for future investigations.

C. Notation.

1. Complex representation of physical waveforms.

In this paper we shall, for the most part, use the complex representa-
tion of physical waveforms which is described by Woodward. (14) The part of
this notation which is of immediate concern to us is that relating to the repre-
sentation of narrow-band-pass waveforms. This is essentially a generali-
zation of the familiar practice of representing A cos (2wft+d) by A ejZTrft, where
A is complex. More generally, a narrow-band-pass waveform is represented
as the product of a complex low-pass modulating waveform, x(t), and a
cisoidal carrierfE’g

jent t
E(t) = x(t) e (1.01)

fo is a suitably-defined carrier frequency--for example, the centroid of the
energy- or power-density spectrum of the waveform. As in the cosinusoidal

case, the actual physical waveform is represented by the real part of £(t):

Et) = %(t) cos 2nf_t - (1) sin 2nf_t (1.02)

# Following Woodward, we shall use Greek letters for complex band-pass
waveforms and English letters for low-pass modulating waveforms.
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where we have used a circumflex (/) to denote '"real part of'' and a tilde (™)
to denote ''imaginary part of''. Equation (1.02) is, in fact, a representation
which has been in use for some time(ls); (1.01) is merely a more convenient
and compact way of writing it.

x(t) represents both an amplitude and phase modulation. Its magnitude,

Jx(t) | =/R°(1) +%°(1) = |&(t)] | (1.03a)

is the amplitude, or envelope, and its angle,

~ . :
A x(t) = tan”! X1 (1.03b)
x(t)
the phase deviation, of the carrier.
The cross-correlation function of two complex transient waveforms,

E(t) = x(i:)eJZWfot and Y,(t) = yr(t)ejznfot, is defined as the complex function

-jenf T
Y(T) = 5@*('5) I”(t--r)dt =e e S x*(t) y(t-7) dt (1.04)

where the asterisk denotes ''complex conjugate''. It is easily shown™ that the
real part of y(t) is twice the cross-correlation function of the actual physical

A A ‘ ‘
waveforms £(t) and V](t). Similarly, the magnitude of Y(t),

[u(r) | = | S x (t) y(t-7) at| (1.05)

may be shown to be twice the envelope of the physical cross-correlation function.*

% See Appendix I.
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We shall find it necessary to use the sampling theorem for band-limited
waveforms. In complex notation this takes the following form. (14) Suppose
that £(t) contains no frequency components outside of the band fc - -VZV-_<_ f

/
< fc + sz— (fc _\;—& ). Then §(t) is completely specified by complex samples

—

gk = §(t_k) taken at intervals of % seconds. Furthermore,
2 2 ’
WS [&(t) | dt=z 1€, | (1.06)
k

2. Fourier transforms.

In this paper we shall use Fourier transforms in which the frequency-
domain variable is a cyclic, rather than a radian, frequency. That is, the

transform pair

Q0
x(t) = S X (£)ed 2™t gf (1.07a)
-0
w °
X(f) = S x(t)e IZTE g4 (1. 07b)
-0

will be used, where x(t) is the time-domain function, and X(f) its frequency-

domain mate.

3. Probability and probability density.

We shall use the notation Pr(x] for ''probability of x'"" and pr[x] for
"'"probability density of x'', and shall reserve the letters P and p (usually with

subscripts) to denote particular probability (density) distributions.



- 10 -

CHAPTER II: THE CHANNEL

We now turn our attention to answering the fifth question of the last
chapter, "In what form is statistical knowledge of the channel available to the
receiver and transmitter?" We may partially answer this by stating, "In the
form of probability distributicns of channel characteristics", but this is not
very satisfactory, for one is immediately led to ask, "What are the pertinent
characteristics, and what are their probability distributions?" This chapter
is devoted to answering the latter question.

Knowledge of the channel may be divided into two types: a prioriand a
posteriori. The former type may be based on a physical model of the channel;
on the other hand, it may merely reflect ignorance of the channel, and thus be

better labelled a priori "misknowledge". * A posteriori knowledge is based on

channel soundings, i.e., on measurements of channel characteristics. We

shall discuss the two types of knowledge in the order mentioned.

A. A Priori Knowledge.

1. A model for the additive noise.

Let us first dispose of the question of a model for the additive noise at the
receiver end of the channel by assuming that the noise is statistically independent
of the multipath medium, and is statistically stationary, Gaussian, and has a
flat power -density spectrum, at least over a rang.e of frequencies which covers
the transmission band. If we are considering a radio communication system,
for example, such a mcdel might correspond to the thermal noise in the re-

ceiving anterna and receiver, and to the shot noise in the receiving tubes.

This will be discussed later in more detail; suffice it to say now that the
design of the receiver and transmitter depends not on what the channel actually
is, 'but on whathe receiver and transmitter think it is. . ... ... . ...
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We may, without loss of generality, assume that the noise power-density
spectrum is constant and equal to No (watts/c.p.s.) over a bandwidth WN'
which at least covers the transmission bandwidth W, and is zero elsewhere."' »
Then from the sampling theorem of Section I.C.l, a noise waveform, V(t), is
completely specified by complex samples, 'Vk, taken at intervals of l/WN
seconds. The real and imaginary parts of each sample are Gaussianly distri-
buted, and mé.y be easily shown, using a result of Rice(ls) , to be independent
and to have a common variance of WNN(;. Furthermore, since the auto-corre-
lation function of the noise has zeros every l/WN seconds, and uncorrelated
Gaussian numbers are independent, the samples are independent of one another.

* e

Then, a sample of noise T seconds long is specified by approximately ™

N

independent complex samples, whose real and imaginary parts are Gaussian and

independent. The joint probability-density distribution of these samples is thus

| 1 1 W, 2
Pr["l""’VTw] = T™W.. **P| "Zw_~_ Z V.| (2.01)
N N N o
(2nWN,) k=1

Using equation (1.06), we may write for the "probability-density" of a noise
g eq y Yy

waveform, V(t), of duration T:

T
pr[Vit] = - TW— ©*P -—ZLN— 1V | % at (2.02)
(2nWN,) o

* Strictly speaking, the noise cannot be truly random (i.e., unpredictable from
its past) under these conditions (cf. reference 1, Sec. 2.4). Practically speaking,
however, we may ignore the inherent predictability, for it would be difficult, if
not impossible, to utilize.

o We say "approximately", for a waveform cannot be simultaneously of finite
bandwidth and finite time duration. For T » l/WN, the approximation is very good.
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Equation (2.02) is sufficient, for our purposes, to characterize the additive

noise. We assume that No is known.

2. A model for the multipath medium.

We shall describe the multipath medium in terms of elementary "sub-
paths", which we shall group together in a certain way to form "paths"., A
sub-path is defined by a strength, bik’ and a delay, tik' such that, if a signal,

* (The subscript

€(t), is transmitted, the output of the sub-path is bik §(t-tik).
ik, indicates that we are considering the kth sub-path of the ith path.) A path
is in turn defined as a group of sub-paths whose delays differ from one another
by amounts much less than the reciprocal of the transmission bandwi;ith, w.

-

+
The contribution of the i~ path to the multipath-medium output is the sum of

its sub-path contributions:

NCE Z b, X(t-t,) e (2.03)
K

" where we have written, as in equation (1.01}, £(t) = x(t) ejz‘ﬂ.fot. Now, since
x(t) is a low-pass function which does not vary-appreciably cver intervals much
less than %v—, we may, to a very gocd approximation, set x(t-tik) = X(t-'ri) for
all k. Then Yh(t) becomes

— jewf (t-t. )
n,(8 = x(t-7,) Z be O F (2.04a)

k
We shall call T, the modulation delay of the ith path. It is a vaguely-defined
quantity which, practically speaking, may be set equal to any one of the tii{'s.

We shall assume that, generally, the terms of the summation of equation

*This implies the assumption that the multipath medium is linear and its
physical properties do not vary appreciably across the transmisision band.
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(2.04a) are of two types: those terms for which bik and tik are fixed quantities,
and those for which b,, and t.) @re randomly time-varying quantities. Summing

over these two types separately, we may rewrite equation (2.04a) in the form:

N = x(t-r)[ a0 4 5,0 I dmlot (2. 04b)

flred random
The first bracketed term in equation (2.04b) we shall call the fixed component
of the ith path, for oy and 6i are fixed quantities. The second term we shall
call the random component; 5 and €, are randomly time -vérying quantities.
These terms may be represented vectorially
(see Figure 2-1): the resultant of the fixed

and random components is a vector of length

a; and phase 8,. Correspondingly, equation

(2.04b) may be rewritten as

FIGURE 2-1

j(waOt-Gi)

Y’i(t) = a, x(t-ri) e ‘(2. 04c.)
We shall call a, the strength, and Oi the carrier phase-shift, of the ith path.

We have thus reduced our description of the ith path to that of three char-
acteristics: a;, ei, and -ri.¢ Tﬁe se are generally random functions of time, and
we may therefore describe the ith path in terms of probability-density distributions
of the three charac-teristics. It will be seen later that, for the purposes of this
paper, it will be sufficient to know only the first-order joint distribution,

PTr [a,i, ei, Ti]; we shall not require higher-order distributions.

*We are justified in speaking of TS and Gi separately, for, because of the manner
of definition of T, We may consider variations in Bi (i.e., in the tik's) while con-

sidering T, to be fixed. This will prove to be a convenient technique.
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In establishing the expression for this first-order distribution, we first
write pr[a.i, Gi, -ri] = pr['ri] pr [ai, Gi/-r;] . We then assume that for a
"fixed" TS the random sub-paths combine in such a way that the strength, 8
of the ith random path-component is Rayleigh distributed with mean square
Zo-iz; and its phase-shift, €. is completely random (i.e., distributed evenly
over the interval (-, 'rr)).g'k l\iow, Rice (16) gives an expression for the joint
distribution of amplitude and phase of the sum of a fixed vector and a vector
with Rayleigh-distributed amplitude and completely-random phase; using

. L
this we may write:

r o a, a.2 + o.fz- 2a.a, cos(0,-6,) | [ota,&o
SEE SRR i i i1 i i i i
—_ 2 °¥P Z w0541
27o, 2, i i
i i
pr [ai,ei/'ri] =< (2.05)
0 elsewhere

The dependence of pr [ai, Bi/Ti] on T, if any, will be through the parameters
a,, 0, 6,. We shall leave the question of an a priori distribution for Ti» PT ['ri],
until a later chapter.

The multipath medium will generally contain many paths such as the one

described above, say L of them. The total output of the medium will then be

L L
y](t) = Z Yli(t) = Z a; X(t-Ti) eJ(zwat - 8i) (2.06)
i=1 i=1

*This assumption implies that the quadrature components of the random vector,
si, are independent, Gaussian variables, with zero means and equal variances.
These conditions obtain in many physical situations (see page 16 for examples) in
which the number of sub-paths is great enough for the central limit theorem to

apply.
** The marginal distribution of the path strength, ai(see equation(A8-8)of Appendix
VIII)is Rayleigh for(o.i/cri)=0, and is essentially Gaussian of mean a, and variance

O'iz for (ui/cri)->°° (Cf.reference 16). For curves of the marginal distribution of Bi as

a function ofo.i/o-i, see reference 17.
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and the medium will be completely described, for our purposes, by the joint
’first-order distribution of the three sets of characteristics: (ai), (ei), and
('ri). We shall assume that all paths are conditionally independent, so we may

write
L

pr [(a) (0)/(r)] = _ﬂ— pr[a;, 6]+ ] (2.07)
i=1
In order to complete the a priori description of the medium, we need the joint
distribution of the Ti'S, pTr [(-ri)]; again, we postpone consideration of this until
a later chapter.

One may perhaps obtain a greater insight into the above description of the
multipath medium by referring to Figure 2-2, in which the output of a three-
path medium is depicted on the assumption that a pulse is transmitted which has
unit height and a width approximately equal to the reciprocal of the bandwidth.

The output of the multipath medium then consists of three pulses, also of width

transmitted multipath medium
pulse

FIGURE 2-2
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approximately equal toV—lV’ whose heights, modulation delays, and carrier
phases (relative to the carrier phase of the transmitted pulse) are a; T
and ei, respectively (i=1, 2, 3). The carrier period has of course been
greatly exaggerated. We shall postpone discussion of the discreteness of
the output pulses until the next section (see the discussion following equation
(2.20)).

We may establish the following correspondences between the above des-
cription of the multipath medium and actual physical phenomena. The fixed
path-components may be attributed to reflections from fixed objects or from
stationary refracting layers. The random components may be attributed to

(18)

scattering from turbulent regions of a medium

(19)

, reflections from groups

of randomly-moving reflectors , or diffraction from a randomly-moving

diffraction screen(zo), Using these correspondences, our multipath model
may, in many cases, be applied to such situations as radio transmission via
the ionosphere (either below or above the MUF) or via tropospheric scattering;
or to sonic or super-sonic transmission through fluid media. Experimental
verifications of the validity of the probability-density distribution of equation

(2.05) in the ionospheric and tropospheric cases are reported in the literature(ZI’

22, 23).

So much for the model of the multipath medium. Its failing is quite evident,
for although we have established a conditional distribution for the path strengths
and phase-shifts, we see that this is dependent on the sets of parameters (o.i),

(cri)-, and (61), and these are generally unknown a priori. The parameters may

in fact, in an actual physical situation, vary slowly with time, thus making (2. 05)
and(2.07) only quasi-stationary. It is also likely that the actual probability-density
distribution of the -ri‘s will be unknown a priori. Thus, the a priori physical des-

cription of the multipath medium is generally incomplete, and we are reduced to
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one of the two alternatives: either we may accept our ignorance, and make
"educated guesses" at the unknowns, i.e., assign rather arbitrary probability
distributions to them; or we may try to measure the characteristics, (ai), (91),
and (-ri), directly. * We shall consider the first alternative in a later chapter,

the latter in the next section.

B. A DPosteriori Knowledge.

1. A posteriori distribution of characteristics of medium.

Let us consider a measurement system in which a sounding signal, £(t) =
x(t) erwfot, of bandwidth W, duration T, and energy E, is transmitted. The

jZ‘ITfot

received signal, {(t) = z(t)e , is the sum of the multipath medium output,

r](t), and a noise waveform, P (t):
L = e+ V) (2. 08)

We shall assume that T is small enough so that the multipath medium may be
considered fixed (i.e., (ai), (ei), (-ri) constant) for the duration of the transmission¥*
Because the measurement is made in the presence of noise, our a posteriori

knowledge will not be exact; all we can expect is an a posteriori distribution of the

characteristics of the medium, to be obtained by some operation on {(t), assuming
that the receiver has an exact replica of £(t). We denote this distribution by
pr [(2;), (8), (7)/, £].

Before deriving the expression for this a posteriori distribution, let us write

down expreésions for the auto-correlation function of £(t) and the cross-correlation

*The possibility of measuring just the parameters, (a;), (¢j), and (6;), of (2.07) may
be eliminated, for these may, in general, vary with time and thus cannot be measutred
once and for all. If we are going to the trouble of repetitive measurements, however,
we might just as well attempt to measure the characteristics, (a;), (8;j), and (1i),them-
selves,

**In the ionospheric case, for example, this limits us practically to T's of the order
of fractions of seconds or less.
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function of £(t) and ¢(t). In complex notation (cf. equation (l.04)), the auto-

correlation is *

o(1) = y £* (1) g(t-)at = e J2moT 5 %7 (t) ®(t-1) dt (2.09)

The cross-correlation is

G () = g;*(t) g(t-7)dt = e J%TioT \S‘z*(t) x(t-7) dt (2. 10)
The second part of (2.10) may also be written as

U(r) = g(r) e I2mHoT | ey

where g(7) is equal to the integral containing z and x, which is a complex low-
pass function.

As we have noted in Chapter I, the real part of a complex correlation
function is twice the correlation function of the physical waveforms, and the
magnitude, twice the envelope of the physical correlation function. Thus, in

(2.11), the real part

‘TJ(T) = g(-r) cos wao'r + g(-r) sin 21-rf°'r (2.12)

A IN
represents twice the correlation function of {(t) and £(t); and I\IJ(T)I = ]g('r) l, twice
the envelope of this correlation function.

We may write the a posteriori distribution of the characteristics of the medium

in the form

pr [(a;), (8. (r)/t, 8] = pr [ (/6. €] pr [(ap), (0 /(7). £, 8]  (2.13)

*all integrals extend over regions of non-zero integrand.
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We shall first derive an expression for the second factor on the right. By

Bayes' equality,

pr[(a), (8.)/(m)] pr[t/@), (8,), (7.), &
pr [(ai), (ei)/(Ti),§,§]= [1 X ;3[4/(21%51] r 2 ] (2. 14)

In this expression, pr [(ai), (ei)/(Ti)] is an a priori distribution. We shall
assume that it is of the form of (2.07), and leave the question of the values of
the parameters, (o,i), (o'i), and (61), open for the moment. pr [g/(-ri), §] is just
a normalizing factor; it ensures that the integral of (2. 14), taken over all values
of the ai's and Gi's, is unity.

The remaining factor, pr [g/(ai), (Gi), (-ri), g] , we shall call the likelihood

function of {. It is just the probability that, from (2.08),

I = L) - o (2. 15)

given,V\(t) in the form of (2.06), with (ai), (ei), and (Ti) known. Using (2.02) for

the probability of ¥(t), and assuming that

N
75 lotr-m) €1 -:~2—z°E , alli# k (2. 16)
G,
1

we easily obtain an expression for the likelihood function, which, when used with

(2.07) and (2. 14), yields for the a posteriori probability*'

L a, a? +a® -2a'a. cos(8.-5") J(0¢a. L
1 exp _ 1 1 11 1 1 1
[T Zne? 2514 €0, -8! &
i=1 i i1
pr {(a;), (8)/(7)), ¢, € ]=
0 elsewhere
(2.17)

EiESe e Appendix II.
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In this equation

1
2 2 z
: 2 'g(Ti)l a4 2o, -j6;
% =% Y= tlz t—== Re[g”i)e 1] (2. 182)
No A o, No
-1
2 2E 1 :
o-i' =| +.._2. (2. 18b)
o o5
o g(r;)
;2 sin 6i + No 7
v .-l i
6 = tan c Q(Tir (2. 18c)
—5 CoOs 61 + N
o5 o

Thus, the a posteriori conditional distribution of (ai) and (Bi) is of the same form

as the a priori conditional distribution. (cf. equations (2. 05) and (2.07)). The new

parameter sets, (ai'), (o-i'), and (6i'), depend only on the noise power-density, the
old parameters, and sampled values of the cross-correlation function of the incoming
signal and the replica of the sounding signal stored in the receiver. Thus, the
factor Re [g(-ri) e-jai] of (2.18a) will be recognized from (2. 12) to be twice the cross-
correlation, sampled at modulaticn delay Ty in carrier phase 6i;¢ similarly, @(Ti)
and '{;‘(-ri) of (2.18c) are twice the correlation at TS in carrier phases 0 and %, res-
pectively. Ig('ri)l is twice the envelope of the cross-correlation, sampled at delay
TS

Let us now return to the question of the a priori parameters, (ai), (r,-i), and (Bi).
Because of the equivalence of the forms of (2.07) and (2. 17), we see that these para-
meters may indeed be the a posteriori parameters of a previous measurement. If,

however, there has been no previous measurement, we must do the best we can by

choosing the parameters in such a way as to register our a priori ignorance. Now,

*We here again invoke the property of narrow-band(correlation) functions, tnat we may
speak of modulation delay and carrier phase separately; that is,we may speak of the
correlation at various phases for a given delay.
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roughly, we may think of the o‘i's as measures of this ignorance --- the larger a
particular Ty is, the more uncertain is our a priori knowledge of the strength and
phase -shift of that path; g, = indicates complete a priori ignorance. In this
latter case, we note from (2.18) that the a posteriori parameters are independent
of the a priori ones; (ai), (Gi)’ and (6{) depend then only on the measured cross-
cofrelation function.

The result of the measurement, we hope, will be to make a substantial in-

crease in our knowledge of the multipath medium. Fer this to be true, we must

have ¢!«o,. From (2.18b), this means that

20'.2 E
i

N
o

> 1 (2.19)

That is, for a useful measurement, either our a priori kncwledge must be small

(u‘i large), so that any a posteriori knowledge is helpful, or the signal-to-noise
ratio, %—- , must be large.
o
Suppose that (2.19) is satisfied, i.e., the measurement is a useful one. Then

assumption (2.16) becomes
g5 lolr-m )1, allifk (2. 20)

The left-hand side of tkis inequality is the envelope cf the normalized auto-correlation
function of the sounding signal. Now, this signal has bandwidth W, and we know that
the auto-correlation function of a signal of bandwidth W is small for values of argu-

ment greater than the order of Vl_V . Thus, (2.20) will be satisfied if

;-7 ] > o (%r_) ‘ (2.21)

We conclude, then, that if the measurement is useful at all (i.e., (2.19) holds), the

distribution (2.17) is valid only if the multipath medium is made up of paths whose
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modulation delays differ by amounts greater than the order of V—lV . This is not
too much of a restriction on the generality of (2.17), however, for we have al-

ready seen that, for all practical purposes, a group of paths (sub-paths) whose

delays differ by amounts less than the order of Wl can be considered a priori

as one path by vectorially adding their strengths. We can thus reduce the number
of paths under consideration in such‘a way that (2.21) is automatically satisfied,
at least to a good approximation,

We may also interpret (2.20) from the point of view of resclvability of paths.
Let us first write down the expression for the a posteriori probability distribution

of the -ri’s, which can be derived in a manner similar to the derivation of (2. 17). *

L 1y 2
pr ()] = cor[tp] T exp[{r(;ir) ] | (2. 22)
i=1 :

C is a normalizing constant which ensures that the integral of (2.22), over all
configurations of the -ri's, is unity. pr [(Ti)] is an a priori distribution of the -ri's.
We see that the only operation upon which the a posteriori distribution of the
'ri's is based is again the cross-correlation function of the received signal with the
stored replica of the sounding signal. In particular, for the case o>, all i, we
require only the envelope of this cross-correlation (cf. equation (2. 18a)). Now,
for a reasonably high signal-to-noise ratio, E/N0 (which is required for a good
measurement), the cross-correlation function 'g("')l
will be essentially the auto-correlation function
of the sounding signal, added to itself several
times with different delays, once for each path

(cf. equations (2.06), (2.08), (2.09), and (2. 10)).

If (2.20) is satisfied, then the contribution to the
FIGURE 2-3

*See Appendix II.
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cross-correlation due to any one path will be essentially nil at the peak of the
contribution due to another path, so that the envelope of the cross-correlation
will consist of L distinct pulses, as in Figure 2-3. On the other hand, if (2.20),
and hence (2.21), does not hold for a pair of paths, the corresponding pair of
pulses in Figure 2-3 would merge, i.e., be unresoclvable by the measuring equip-
ment. But the two paths may also be considered as sub-paths of a composite path
(at least to a good approximation), so that our method of grouping sub-paths is
equivalent to saying that we need only consider as distinct those paths which can
be resolved by the receiver.

Now consider the case for which we have no a priori knowledge of the multipath

medium, not even of the number of paths which exist. By the above reasoning, we
can find an effective path number by counting the number of resolved pulses in
lg('r) | . We may then use (2.17) and (2.22) to obtain an a posteriori distribution
of the characteristics of these effective paths, for condition (2.21) will automati-
cally be satisfied.

This reasoning of course breaks down if extended too far. We have assumed
that we can group sub-paths in a reasonable manner, so that Figure 2-3 is an
accurate representation, i.e., is composed of discrete pulses of width very close

L If there is a continuum of sub-paths, however, we should be able neither

to W
to. group sub-paths in a reasonable way a priori, nor to resolve any discrete pulses
in |g(T)|. We shall hénceforth assume that the possibility of a continuum of paths
does not exist; we shall restrict ourselves to the discrete - path case.

As a final point related to (2.20) and (2.21), we consider the power-trans-
mission spectrum of the multipath medium. If there are mere than cne path, and.

(2.21) holds, the paths will interfere constructively at some frequencies in the band

and destructively at others, as in Figure 2-4; that is, the medium will be frequency
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selective. On the other hand, the interference \
of the component sub-paths of a path is not freq-

uency selective; it is for this reason that we are

able to group sub-paths and represent the resultant

path by the frequency-independent parameters, a; ’ . W -
) 1 1 - f

o., 6.. . )
i’ Ci .
FIGURE 2-4

We have noticed that the only operation which is required to obtain an a
posteriori distribution of the multipath characteristics is the cross-corrélation
of the received signal with the stored replica of the sounding signal. Now, as
is well known, (5) this operation can be performed with a linear filter which is
"matched"(25) to the sounding signal; that is, one whose impuise response is the
same as the sounding signal, but reversed in time. This is easily seen by writing
the convolution integral, giving the output of a linear filter in terms of its input

&
and its unit-impulse response function. In complex notation, this is’

p) = 3 (¢ mue-m ar (2.23)
where P is the output; {, the inpwt; and p, the impulse-response function. If we
let p(t) = £(-t) and B(t) = 21-¢(t), (2.23) becomes formally identical with (2. 10). u(t)
may be made physically realizable (£(-t) is not) by allowing a time delay of T seconds,
that is, setting p(t) = §(T-t). The times at which the filter output is sampled must
be correspondingly delayed. For largeﬁE; , the envelope of the matched-filter out-

put will look like Figure 2-3 (four-path case), where T is now the time variable.

2. Minimum-mean-square-error estimation of impulse response of medium.

Instead of obtairing the complete a posteriori distribution of the characteristics

of the medium, we might only be interested in obtaining some definite estimate of

*For an explanation of the factor of 1/2, cf. Appendix I.
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the characteristics. One type of estimation would be to find those values of the
ai's, 9i‘s, and Ti'S which maximize (2. 17) and (2.22); that is, we may choose
the a posteriori most probable characteristics. We shall describe in this section
another type of estimation of which we shall call minimum-mean-square-error
estimation.

Let us think of the medium as a randomly time-varying linear filtef; and
let us try to estimate its impulse response by some linear operation on the re-
ceived signal, when we have transmitted a sounding signal, x(t) * , of duration T.
We again assume that the medium, and hence its impulse response, stays fixed
for ’the duration of the transmission.

The measurement system may be depicted as in Figure 2-5, where we have
indicated the sounding signal as tle output of a linear filter with impulse response
x(7), when a unit impulse, &(t), is applied to its input. We require the impulse

response, he('r), of the linear estimating filter which makes a minimum-mean-

x(T) h_(7) h_(7)

y(t) |
X(£) H_(f) H_(f)

n(t)

FIGURE 2-5

square-error estimate of the impulse response of the medium, hm('r); this
estimate is made in the presence of additive noise, n(t).
Suppose that we know that the impulse response of the medium lies essentially

inside of some interval, say 0¢ 7¢ A. Then the expression for the mean-square

*We abandon here the complex notation, for the results in this section may be
applied more generally than to just narrow-band-pass situation.
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error of the output of the estimating filter may be defined as

€

A . .
Ex. M [ % y {g(t) - hm(t)}z" dt] (2.24)
| 0

where g(t) is the estimating filter output, and EN M denotes a statistical average
over the ensembles of possible noises and possible impulse responses of the
medium. We minimize this error by varying the estimating-filter impulse-response;

that is, we set
e = 0 (2. 25)

where the variation is with respect to the estimating-filter impulse-response.
It is shown in Appendix III that the transfer function of the estimating filter

(i.e., the Fourier transform of he(f)) which satisfies (2. 25) is

%k
1 x () '
H (f) = > . (2. 26)
opt A Nm ., K@
ERGIE 4

where the asterisk denotes "complex conjugate”. In this expression, X(f) is the
sounding-signal voltage-density spectrum; ]Hm(f)l , the average power-transmission
function of the medium; and N(f), the noise power-density spectrum. * Thus, the
only statistic of the medium which one must have a priori is IHm(f) I 2; if we have
no. a priori knowledge of the medium, we set this equal to a constant.

The filter of (2.26) may not be physically realizable, because the condition that
the impulse response of a realizable filter must be zero for negative arguments was
not used in the derivation. However, this is not a great problem; we can usually

accept some delay in obtaining our estimate of hm(‘r), and He (f) can usually be
t

op

|!'Pln the interest of generality, we shall temporarily neglect our white-noise assump-
tion; we shall assume, however, that N(f) is known to the receiver.
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made realizable, at least to a very good approximation, by introducing sufficient
delay. This delay will usually not be more than the order of T seconds.

For the no-noise case, i.e., N(f)= 0, the solution reduces to the inverse

filter
1
He 0= zm (2.27)

opt
This is, of course, to be expected, for the voltage-density spectrum at the channel
output is Hm(f) X(f), and the filter of (2.27) restores this to just Hm(f), which is
Fourier transform of hm('r). Thus, in the no-noise case, hm(-r) is estimated with-
out error.
For N(f)% 0, comparison of (2.26) and (2.27) shows that the optimum filter may
be expressed (see Figure 2-6) as the cascade of the inverse filter of (2.27) and a

filter with transfer function

x(£) |
H () = A — (2.28)
© N (5 + 1X@]°
r A
where we have set
N_(f) = N—_‘f)_z-
| (6]

(Nr(f) is thus the noise power-density spectrum, referred back to the transmitter
through the average medium.) The output of the inverse filter in Figure 2-6 con-
tains hm(T), but it also contains a large amount of noise, especially at those freq-
uencies where X(f) is small. The second filter attenuates the noise, but in doing .

S0, smears hm(T). The optimization procedure may be thoughtof as one which
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makes the best compromise between

eliminating noise and keeping hm('r) [T ———————— - —

undistorted. Hc(f) is a zero-phase |
I

filter, as one would expect, for any X (@) |
other phase (except a linear one, which i _:
is a trivial exception) would distort the - ;Ie— ;(.fi— o
desired output, hm(-r), without heélping to P

attenuate the effect of the noise, which FIGURE 2-6

has random phase anyway.

If A is of the order of magnitude of T, then the second term in the denominator
of (2.26) is roughly the transmitted power-density spectrum. If this is small, for
all f, compared to Nr(f) (or, equivalently, if the average received-signal power -

density spectrum is small compared to N(f)), then (2.26) becomes

*
_ L X
Ho @ =3 ~® (2.29)
opt r

If Nr(f) is constant with frequency, which will occur, for example, if the noise is
white and we have no a priori knowledge of the medium, then the filter of (2.29) is
matched(zs) to the sounding signal; for taking the conjugate of a frequency spectrum
implies reversing the time function.

So far we have considered X(f) to be arbitrary. Now let us, while keeping

He(f) = He (f), solve for the X(f) which minimizes ¢, subject to the constraint
opt ’
that the energy in x(t) be fixed and that X(f) lie within a given band. That is, let

us set
0

X |x@®]%at = K (2.30)

=00



-29 -

and

X(f)=0 for fnotin Fl (2.31)
where F, is the permitted band of frequencies, and solve the equation

é(em +AK) = 0 (2.32)

where N\ is some constant. (26) € is the minimum mean-square error for an arbi-
trary X(f).

The solution to (2.32) is shown in Appendix III to be

1 1
( 4 rerree 2
[npa] | & - 2L finF,
. J . W [H _(9]2
x(f) = e P (2. 33)
0 fin F'2
\

In this equation, B(f) is an arbitrary phase function, F2 is the set of all freq-
uencies in Fl for which

1 /N@a
N TTTIE

and F'2 is the set of all frequencies not in F . The constant, \, is adjusted to
satisfy the energy constaint, (2.30). The 1nt?rpretat1on of (2. 33) confirms one's
intuitive notions. The first factor, [N(f) A]4 , indicates that if the noise power at
some frequency, fl, is very small, then little signal energy is needed at that freq-

uency to determine Hm(f On the other hand, the second factor indicates that if

l)'
the noise power at fl is very large, or the average power transmission of the medium
is very small, then it is a waste of the limited available energy to put much, if any,

energy at fl; the energy may be used to more advantage elsewhere.

If we place (2.33) in (2.26), we obtain the optimum estimating-filter transfer -
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function corresponding to the optimum X(f):

1 1

r -
P Zz
E\I(f) A] L. _Nha fin F,
J o |H_ (D2
H, (f) =X &P (2. 34)
opt .
0 fin F'2

We have assumed here that N(f) is non-zero at all frequencies. The optimum
filter of (2.34), as we should expect, has large gain at frequencies with 'sma11>
noise, and small, or zero, gain at frequencies with large noise.

The mean-square error corresponding to (2.33) and (2.34) is, from Appendix

III:

1

g

~ ~ __—2_
€ = 5 N({) AN df + 5 |H_(5]" af (2. 35)
F2 ¥
The first term in this expression is the contribution to the error of the noise and
smear components of the estimate which arise within the passband of H (f). The

e
opt
second is the smear contribution arising from the complete lack of an estimate of

H_ (f) in the stopband of H (f).
m e
opt

We are actually usually interested in estimating Hm(f) only within the trans-
mission band, Fl’ instead of for all f as we have done, for F1 is the band we shall
use for communication. That is, we are interested in estimating the instantaneous
impulse response of an equivalent medium which has zero transmission outside of

F This imposes no additional problem, however; it is easy to see that the result

1°
of (2.34) is optimum in this case also, since it is independent of values of Hm(f)

outside of the transmission band. The error of (2. 35) also obtains in this case,



- 31 -
except that the second integral is now taken over only those frequencies in

Fl

5 which are within the transmission band (i.e., the intersection of F1 and Fé).

If the noise is white, i.e., N(f) is constant, at least over the transmission
band, we see that the optimum estimator of (2.34) is proportional to the complex
conjugate of the sounding-signal spectrum of (2.33). That is, the optimum esti-
’mator is matched to the sounding signal. Thus, we use the same device in making
a minimum-mean-square-error estimation as in measuring the a posteriori pro-
bability distribution of channel characteristics (;:f, preceding section). It seems

reasonable to assume that, this being the case, the spectrum of (2.33) will also
a!

give the least equivocal a posteriori distribution, that is, the largest ratio 7;1,-
i

in (2. 18).
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CHAPTER III: THE PROBABILITY COMPUTER.

We shall in this chapter derive expressions for the operational form of
the probability computer. Let us first restate the problem. The transmitter

transmits a sequence of message waveforms chosen independently, with

T
probabilities, P_, from a set of M message waveforms, £ (t) =x (1:)eJ TI'fOt
m . m m
(m=1,2,...,M); these waveforms and probabilities are known to the
szfot, which is the sum

receiver. The receiver receives a signal, {(t) = z(t)e
of a noise waveform, ¥ (t), and tle output, V](t), ‘of the multipath medium. The
probability computer is asked, on the basis of its knowledge of the channel and

of the a priori waveform probabilitiss, Pm,_ to operate on {(t) in such a way as to

obtain a posteriori probabilities of the various possible transmivtted sequences.

The analysis becomes particularly straightforward if we make two
simplifying restrictions; the effect of these is to allow us to describe the
multipath medium completely in terms of the first-order joint distributions of
(ai), (Oi), and (-ri) given in the last chapter, with no higher-order dis‘cributionsi'i
required.

First, we shall require, as we did of the sounding signal of the last chapter.
that the message-waveform durations be small enough so that we may consider
that the multipath medium remains essentially fixed during the transmission
of a message waveform. In the case of an ionospheric medium, for example,
this requirement limits the waveforms to durations of the order of fractions
of seconds or less.

Second, we shall restrict the receiver to per-waveform operation. That is,

we shall require that the receiver consider each waveform in the received

# I.e., joint distributions of the values of the variables (a ), (6.), and (71.) at
many different times. ! !
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sequence as an event which is independent of each other waveform. This
independence does not in fact exist, for although we have assumed that the
waveforms of the transmitted sequence are independent of one another, it is
clear that the perturbed waveforms of the received sequence are not. This
follows from the fact that the characteristics of the multipath medium have
been assumed to change only very slowly from waveform to waveform of a
sequence, and hence, the multipath-caused perturbations of successive
message waveforms are not independent. *

The assumption of per-waveform operation implies two other assump-

tions: that all message waveforms have the same duration (say, T),s0 that the

starting time of each member of the sequence does not depend on the past
history of the sequence; and that either enough time is allowed between the
transmission of successive message waveforms of a sequence so that the
waveforms do not overlap at the output of the multipath medium because of
the spread of path delays, or that any overlapping is small enough to be
neglected (i.e., the spread of delays of the medium is small compared to
the duration of a message waveform).

Using Bayes' equality, we may write for the per-waveform a posteriori

probability of the mth waveform:

¢ The overlooking of the inter-waveform dependences which is entailed in
per-waveform operation results in a loss of information. One may, by the
following argument, gain an insight into the way in which consideration of
these dependences could lead to additional information about the trans-
mitted message. Itis evident that we may use the message waveforms as
channel-sounding signals as well as information-bearing signals; that is,
on the hypothesis, say, that £, (t) was sent, we may compute an a post-

eriori distribution of channel characteristics just as discussed in Chapter II.

Now, since these characteristics are assumed to vary very slowly, we
should, for example, consider a sequence of message waveforms which all
give similar distributions of characteristics more probable than a sequence
for which successively-obtained distributions are vastly dissimilar.
Per-waveform operation does not utilize such information.
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P_pr[e/t ]
pr(t]

(3.01)

prle /t]=

Now, the a priori probabilities, P_ , are known, and pr [{]is just a nor-
malizing factor independent of m, so the problem of computing Pr [§m/§]
reduces to an evaluation of the ''likelihoods", Am = pr [g/&m]. ‘[\'m is just the

probability that the noise waveform, Y (t), is

Pt) = ¢t) - r)‘m’m | (3. 02)

where r’(m)

(t) is given by (2. 06), on the hypothesis x(t) = xm(t). Using the
assumption that the multipath medjum stays essentially fixed fo'r the duration

of a message waveform, this probability may be written as:

m

31, times (3. 03)

We shall devote the rest of this chapter to the evaluation of (3. 03).
For reference, we write down the complex cross-correlation function of

t
the received signal and the m h message waveform:
-j21rfo'r

$ (1) = S;*(t) £ (t-m)dt=g (7)e (3.04)

where

B = {270 3 (007 @t (3.05)

A = S . .Spr[(Ti]Pr[(ai), (91)/(Tiﬂprﬂ=l;-q(m)/(ai), 0), (Ti)]dal"' da; de,...do.d...

dr
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A. (7;) Known: (§;) Known.

Let us first assume either that the modulation delays, (Ti)’ are known

a priori, or that their a posteriori distribution, (2.22), indicates that they are

contained, with high probability, in intervals which aré small compared to %
Then the (Ti)-integrations of (3.03) are unnecessary. We also assume that the
parameters of pr[(ai), (ei)/(-ri)] are known a priori (equations (2.05) and (2.07)),
or have been evaluated by measurement (equations (2. 17) and (2. 18)). We shall
use the unprimed a priori parameters for convenience.

Then, assuming the noise-waveform distribution of (2. 02), and further that

the resolvability condition™

— o (r,-7, | << 1 all i # k (3.06)
m

holds for all m, where ¢m('r) is the complex auto-correlation function of the
mth message waveform, it can be shown”? that the 2L -fold integration on the

ai's and Gi's in (3. 03) reduces to

2
g. .
L < g%+ 2, Re[g ‘.e'35i:’_za.2E
1 mi 1 mi 1 m
A =C | | exp|—2 (3.07)
m 2 7 .
Ti=1 20-iEm' 2'CriEm
1 +_No__. 2N_[1+ L ™

w Yo th
In this equation, C is a constant, Em is the energy of the m  message

waveform, No is the (white) noise power-density, and we have written

. = gm(Ti)'

# . - .
. See the discussion following equation (2. 20) for an explanation of the
meaning of this condition.

#¢ See Appendix IV.
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We thus see that the only operations performed by the probability -
computer on the received signal consist in 1) the cross-correlation of this
signal with the M message waveforms; 2) the sampling of these correlations
at delays Ut in carrier phases 6i (cf, equation (3.04)); and 3) the sampling
of the envelopes of the correlations at delays - As we have noted before, *
the correlation operation may be pefformed by matched filters. Thus, the
probability computer contains a set of M matched filters, one matched to
each message waveform, and also a sampling device to sample the outputs
%

and the output envelopes of these filters.

Let us now consider (3.07) for the case where either we know a priori

that the medium contains no random path components,or the receiver has

exact a posteriori knowledge of the medium. Then o, = 0, all i, and

A ) )
_ 1 A -j6: v 2
. = C exp N Z aiRe[gmie 1] - Z a.E (3.08)
i=1 i=1

We notice that the samples of the envelope of the cross-correlation function
have disappeared, and that only the samples of the cross-correlation itself,
Re{gmle _jéi], remain. This, of course, makes sense, for envelope sampling
is of use only when there is phase uncertainty, and here we know the path
phase -shifts exactly.

Now, the multipath-mediurm output in the case o'i =0, all i, is

L .
Y'l(m)(t) =Z a.x_ (t-T.) Jemot-8y) (3.09)
1 m 1

i=1

# See page 24.

## An early interpretation of a correlation receiver in terms of a set of
matched filters was made by Fano(27).
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We therefore see, using (3.04) and (3. 05), that the first term of the exponent

of (3.08) is just the real part of the complex correlation

U = § ™ e (3. 10)

That is, we may think of the likelihood computer of (3.08) as one which operates
on the basis of the cross-correlation between the received signal and the set of

(m)(t) (m=1,2,...,M), which may appear at the output of

known signals, V)
the medium. This is just the correlation receiver of Woodward and Davies(s),
as may be expected; for from the receiver's point of view the (non-random)
medium may be considered part of the transmitter, and the channel then is

i)erturbed just by additive noise.

In the other extreme, when we know a priori that the medium has no fixed

path-components, and we make no channel measurements, we have a, = 0, alli.

Then
L 2 2
1 o-i ,gmil
=C | | exp vi (3.11)
. ZO'.E 2. E
i=1 1+ i"m ZNZ 1+ i m
_No_ o T

We notice here that only samples of the correlation function envelope appear.
This is intuitively justified, for if we were required to sample the correlation
function itself, we should have to do this at a given set of carrier phases. But
we are completely ignorant of the path phase-shifts in this case; i.e., we have
no reason to prefer one set of carrier phases over another. (3.11), with a
much different notation, has also been obtained by Price. (8a)

The behavior of (3.07) for large noise is of interest: as No—voo, it converges

to the fixed-multipath computer of (3. 08). Essentially, this implies that, in
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the limit, the information which is transferred through the channel is conveyed
exclusively by the fixed path-components. This makes sense, for it stands to:
reason that the capacity of that part of the channel which is disturbed by path
fluctuations as well as by noise should vanish more rapidly with increasing
noise than the capacity of the part which is distrubed by noise only. In fact,

Price has explicitly shown this for a special case. (6)

B. (7;) Known: (6ij) Unknown.

We have thus far assumed that the parameters (61) are known. This may -

very well be the case if they are a posteriori parameters. Buton an a priori

basis, although we may know the strength parameters, (o.i) and (o'i), of the
various paths, it is unlikely that we know the phase -shift parameters, (61).
Let us, in fact, assume that the 6.'s are a priori completely random from the
receiver's v1ewp01nt (i.e., distributed evenly over the interval (-m, m)), and

independent. Then, averaging _A. of (3.07) over the 6 s, we obta1n for the

likelihoods
2
2 2
L N'_Igmll -t E a, Igrrnl
™ CIITeXP 2N_(1+B_) ION(1+B ) G-12)
i=1 mi o mi
where we have written
ZU'iZEm
Bmifz —1:]’:_— : (3.13)

Io is the zeroth-order modified Bessel function of the first kind.
Equation (3. 12) depends just on the envelope of the cross-correlation

function of the received signal and the mth stored message waveform; as in

S

+ See Appendix IV.
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the case of equation (3.11), this is due to the receiver's complete lack of
knowledge of the multipath-medium phase-shifts. The message waveforms
may now be stored with arbitrary phase, since phase shifts of the correla-
tion function will of course not affect its envelope.

One might be tempted to argue that, conversely, equation (3. 12) applies
to any receiver in which the message waveforms are stored with arbitrary
phase. This is not true, for although a random phase shift of the mth stored
message -waveform transforms 8mi of equation (3.07) into 8mi -j“m, where
(S is random, P is independent of i; that is, instead of having to average
equation (3.07) over L independent random variables, as in the derivation
of equation (3.12), we must in this case average over just one random variable.

Writing equation (3.07) as the exponential of a sum, and assuming that u is

evenly distributed over the interval (-m, m), we may easily evaluate this

average:
2
ag. N
L L lg %20 E L ~3%;
: mi iTm a.g _.e
n o 1 o 1°mai
A= TN 2N (1+6_.) ollZ N (146__.) (3. 14)
i=1 i=1 ol 1B i1 Nol1+B;

In equation (3. 14), the argument of the Io factor contains the L correlation
samples, which have first been summed coherently (i.e., in the proper phase
relationships) before envelope detection. Equation (3. 14), in fact, also applies
to the case where the ai's are not known exactly, but their differences are.

In this case, the e-jai of equation (3.07) is transformed into e 3% e'jp, where
i is again random, and independent of i; this is clearly equivalent to the case

we have just considered.

* See Appendix IV,



- 40 -

C. (7;) Unknown.

Let us finally consider the possibility that the receiver does not have
exact knowledge of the modulation delays, (Ti)’ as we have assumed up until
now, or that, in the hope of equipment simplification, we choose not to use
this knowledge. Then, from the receiver's point of view, the 'ri's are random
variables with some distribution, pr [(Ti)]' In this case, we generally will not
have, or will choose to ignore, any knowledge of the Si's, so that we may
obtain a new expression for the likelihoods by averaging equation (3. 12) over

the -ri's. Let us first set

0_2
;il—xz - Za.ZE
1 N0 i " m a.x ( 5)
F_.(x) = exp I —_— 3.1
mi 4B . o
mi 2N0(1+Bmi) NO(1+Bmi)

Then, using (3. 15) in (3. 12), and averaging over the -ri's, we obtain immediately:

L
A:} - cg...gpr[(fi)] ﬂFmi[lgm(Ti) l]d‘l'l. Lodry (3. 16)
-1

L times i

where the integrations extend over all possible values of the -ri's.

Strictly speaking, pr[(Ti)] cannot be an arbitrary distribution because of
the restriction imposed by the resolvability condition, (3.06), upon which
equation (3. 16) is based. Let us at this point, however,neglect the resolva-

bility condition, and assume that the paths are independent, i.e., that

L
pr[('r:i)] = I | pT [Ti]; and further that
i=1

pr[Ti]= all i (3.17)

0 elsewhere
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If the number of paths is small, and/or the interval (A, B) large, the total
probability of the cases in which (3. 17) contradicts the resolvability condition
will be small. In such a case, we may expect that the contradiction between
(3.06) and (3.17) will have little effect on the validity of subsequent derivations.

Let us further assume that a.=a and v.=0 for all i, so that

F_.(x)=F_(x) all i (3.18)

ol m

Equations (3. 17) and (3. 18), taken together, imply that, from the receiver's

point of view, all paths are statistically identical. That is, as far as the

receiver knows a priori, all paths have the same strength distribution, and

all configurations of path delays in the interval (A, B) are equally probable.

Using equations (3.17) and (3.18) in (3. 16), it follows that

B L
A'I"n =c[ﬁ g Fm['gm(T)l]dT] (3. 19)
A

In many cases we require only the order, rather than the values, of the
a posteriori probabilities of equation (3.01). If all of the a priori probabilities,
Prn’ are equal, this reduces to requiring the order of the likelihoods; that is,
we ask whether, say, ./\.I:) is greater than or less than A:: Since the term in
brackets in equation (3. 19) is positive, we may then equally well ask whether or

not
B B
5 FP [lgp(T) |] dr > ‘S‘ Fq [lgq(T) I] dr (3. 20)
A A

It is important to note that in order to answer this question, the receiver does

not need to know how many paths there are.
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A receiver which works on the basis of the operations of (3.20) is much _
more ignorant of the state of the multipath medium than ones which operate on
the basis of (3.07), (3.12), or (3. 14), and we should expect a correspondingly :
inferior performance. On the other hand, the operations of (3. 20) may be
implemented much moire easily than those of (3.07), (3.12), and (3. 14), since
no sampling equipment is required in the former. In fact, the "probability
computer'' of (3.20) consists simply of M units like that in Figure 3-1. * In
this figure, we have indicated a matched filter as the correlation operator.
The output of this filter, the cross-correlation function of the received signal
and the mth message waveform as a function of time, is envelope detected,
giving é- lgm(t‘) |. This in turn is fed .into a nonlinear device \y_ith trans.ferl
characteristic Fm(x). In general, Fm(x) may be time-varying, for a and o
may be functions of T; that is, the receiver may know a priori that, say,
paths at one end of the interval (A, B) will be stronger, on the average, than
paths at the other end. Practically speaking, however, we may wish to ignore
this information, so that we may make Fm(x) non-time-varying. The output of
the nonlinear device is passed through an integrator, which completes the
operations required by (3. 20).

Figure 3-2 shows a typical nonlinear transfer charécteristic, Fm(x). It
increases slowly for small values of x, and very rapidly‘for large values of x.
The effect of such a nonlinear operation on the cross-correlation function
envelope is greatly to accentuate the peaks of this envelope. That is, it
weights heavily those parts of the cross-correlation envelope which are most

probably due to the presence of a signal, while it suppresses, relativély, those

*+ The possibility of a solution in the general form of Figure 3-1 was originally
suggested to the author by R.M. Fano.
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parts which most probably originate from noise. Essentially, the nonlinea;'
operator expresses the fact that the receiver grows rapidly more sure that
a cross-correlation envelope peak is significant, the greater is .the magnitude
of that peak. The same sort of reasoning may be applied to the 'results in
Sections A and B of this chapter; m these results, however, nonlinear
operations are applied to sampled values of the cross-correlation functions and

their envelopes, rather than to the complete functions.
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CHAPTER 1V: PROBABILITY OF ERROR: SPECIAL CASE

Let us assume that the receiver makes a guess at which message wave-
form was transmitted by choosing the one with the greatest a posteriori
probability. Under this assumption, we shall evaluate the probabilities of
error of the receivers containing the likelihood computers of equations
(3. 07) and (3.12). We shall do this for what is essentially the simplest non-
trivial case, in which there are only two message waveforms (M=2) of equal
energy .(E1=E2=E) and equal a priori probability (P1=P2=%), and only a single
path (L=1). The methods we shall use can be extended to more general cases,
at least for the system containing the computer of equation (3.07), but only
at the expense of rapidly increasing complexity and difficulty of computation.

For the case under consideration, because the a_t__pr_ioii probabilities
are equal, we see from equation (3.01) that the receiver may make its guess
by choosing the message waveform corresponding to the greatest likelihood.

Thus, we may write the total probability of error as
- (,1)[ ] ;)[ ]
Pe = PlPrﬁ AZ >Al +P, Pl‘ Al >A2 | (4,01)

where the first term is evaluated on the hypothesis that gl(t) was transmitted,
and the second, on the hypothesis that §2(t) was transmitted. Itis easily
seen from considering the symmetry of our special case that these two terms

are equal, so that we may write:

p, =P A, SA ] (4.02)
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That is, we shall evaluate the probability tha.'cA_Z > A‘l on the hypotheéis
that gl(t) was transmitted.
In evaluating equation (4.02), we shall assume that the receiver has only

a priori knowledge of the channel, and that this knowledge is correct. That is,

we shall assume that the parameters, a, o, and No’ of equations (3.07) and
(3.12), and & of (3.07), are in fact equal to the corresponding parameters of

the channel, *

A. T Known: § Known.

We shall first evaluate Pe for the receiver which has phase information,

equation (3.07). We may assume, without loss of generality, that §=0. Then,

from (3.07), [\, >\ | if

2 ' 2 :
_| o 2  2a A o 2  2a A .
D=[—2 lg, 1" + 5 gJ -[—2 lg, 1" + 5 gz] <9 (4.03)
No o No o

where we have, of course, dropped the path index, i. Noting that

lgllz =’g\i +§%, and similarly for lgzlz, and writing
_ o A a
Vit &1t
o
W, = g
2" N, E1
(4.04)
w. =9 b L@
3°N_827F
o
Ve TN 82
o

we may rewrite (4.03) as

# Cf. footnote, page 10.°
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2. 2 2 2
D = (w] +W3) - (w3 +w,) <0 (4.05)

We shall call D the decision variable,

Now, from equation (3.05) we may write

g =S 2™ (1) x (1) dt
(4.06)

g, - 5 2" (t) x,(t) dt

where we have set 7=0 for convenience. By hypothesis, the modulation
waveform of the transmitted signal is xl(t), so, from equations (2.06) and

(2.08), we have for the modulation waveform of the received signal:
- -je
z(t) = axl(t)e + n(t) : (4.07)

where n(t) is the modulation waveform of the additive noise. Now, a and 0
share a joint distribution as in equation (2. 05); hence, the real and imaginary

d. (16) The real and

parts of the first term in (4. 07) are Gaussianly distribute
imaginary parts of n(t) are also Gaussianly distributed. (13) Hence, the two
parts of z(t) are Gaussianly distributed. It follows that the real and imaginary

parts of g, and g,, and hence w

(28)

1 W W and Wy share a joint Gaussian

distribution. Thus, the decision variable is a quadratic form of dependent
- Gaussian variables.
It is easily shown® that the characteristic function of a quadratic form of

Gaussian variables is given by

* See Appendix V. For the special case for which W is a zero matrix, this
result has been given by Whittle. (31)
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Fp(ju) = 39D _ Ly exp [ %WtM"‘l{I-(I-ZjuMQ)‘-;l}V_V:I . (4.08)
|1-2juMQ | o
where I is the unit matrix, Q is the matrix of the quadratic form, M is the
moment matrix of the variables, W is the (column) matrix. of the means of the
variables, ''t''.denotes '"'transpose of'', and | . | denotes '"determinant of''.
The probability-density distribution of D is given by the Fourier transform of FD:
joo

pr[D] = 2—-%- S\ FD(S) e_SD ds , “(4.09)
_ja)

Now, the probability of error is

0
p_ = Pr[D<0] = S pr[D]dD | (4. 10)

Substituting (4.09) in (4. 10), changing the order of integration, and integrating

on D, we obtain

(s) _
zmS D ds S , (4.11)

The path of integration in (4. 11) is taken to be indented to the left at all j-axis
singulatities.

Let us now evaluate equations (4. 08) and (4. 11) for our special case. It is
first useful to define the complex correlation coefficient of the two message

waveforms:

A= ZEE S 5;(1:) £,(t) dt = ,;ngf(t) xz(t) dt' | P (4.12)
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The real and imaginary parts of this, \ and ")'\, are, respectively, the

values of the normalized physical cross-correlation function of the mes sage
waveforms at the origin, and at a displacement of 1/4f0. The magnitude,

[\], is the value of the envelope of the normalized physical cross-correlation
funétion at the origin. It is easily shown, using the Schwarz inequality, that
N <1,

It may be shown* that the moment matrix M, the elements of which are

m..= W,W, - W,W. _ (4.13)

is

pt

; (p+1) 0 NE+1) NE+1) ]
T 0 (B+1) R(p+1) p+1)
M =B R . ) (4. 14)
N(B+1) BN(cERY) BIN["+1 0
| X(p+1) B+ 0 B lxlz+1_
It may also be shown™ that
Y (p+l) |
0
W= R (4.15)
Y(BA+1)
76X\
TP

where Y= %. From (4. 05) it is seen that the matrix of the quadratic form is:

# See Appendix VI for outline of method.



- 50 -

1 0 0 0

0 1 0 0 ' '
Q= (4.16)

0 0 -1 0 '

0 0 0 -1

Substituting equations (4.14) through (4. 16) in (4. 08), we obté.in, after consi-

derable matrix algebr a” A

k s(1+k,8) | -
e"p[ T~ K, s(I7K,5)

FD(s) = (4.17)
1 - k3s(1+kzs)

where we have written

k= s7a(1- | M%) + 204
k, = 2(B+1)  (4.18)
ky = 252(1-lx|2)

The integral obtained by substituting equation (4. 17) into (4. 11) apparently

cannot be evaluated in closed form except in the special cases ¢=0 and a = 0.

In the former case, *4
1 (1-3)a’E |

~here

+ See Appendix VI for outline of method.

+4 See Appendix VII.
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X
2
erf(x) = -= S e"? dgz (4. 20)

This, as should be expected, is the probability of error for a simple correlation

(34)

detector operating in the face of white, Gaussian noise, since in this case
the path has no random component.

Fora = 0;*
P = — - (4.21)

where T, and T, are the roots of

2 1
Ky *y-gg =0 (4. 22)

r, is the positive root.

In the general case (a#0, o#0), we may put the probability of error in a

form which is more convenient for numerical evaluation. This is :

-k751n 0
= k6 S de (4.23)
1+k tan 8 .

where

k, = T +(3K,/K,)
k_5 = (kl/k3)

k=[50 /nk,] exp [- k5/ki]
ko = [l-1/k, ] g

(4.24)

+ See Appendix VII.
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It is to be noted that fhe only characteristics of the message waveforms
on which the probability of error depends are their energy and tl"_xeir complex
correlation coefficient. (Note especially the dependence on the 'c.luadl;a;ture
component of correlati’on,'h)lx, as well as the in-phase component, 'A)\; this. .
dependence on i derives from the phase instability of the path.) For any given -
set of channel parameters, a, o, No’ therer is a value of - X\ which minimizes Pe;
this value, N__., indicates the relationship between the two message waveforms

opt

for optimum system performance. We shall evaluate )\opt as a function of

the channel parameters in the next chapter. Substituting the valﬁes of )\opt
obtained there into equation (4.23), we may compute values of Pe for a system
with optimally-related message-waveforms. These are presented as the
unbroken-line curves of Figure 4-1. The family parameter of these curves
may be written as

B(2+72)

2 2
_ 2(267+a7)E
= —N (4.25)

o

(16)

Now, it is easily shown that the mean-square value of a, the path strength,

is given by

2% = 26% +a? (4.26)

Hence, the family parameter of the curves of Figure 4-1 is the ratio of the

' average received signal energy to the noise power-density. In progressing

along any ore curve, this ratio is held constant, while the ratio, 2/’)’2 = Zaz/az,
of the average energy received via the random path-compohent to that received

via the fixed path-component is varied. The effect of an increase in the
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average strength of the random component, at the expense of a corresponding
decrease in the sfrength of the fixed componenf, shows up as an increase in
probability of error. It is interesting to note how rapidly thev performance of
the system dete;'iorates as the path changes from one which is completely
fixed (2/1"2 = 0) to one with the same average total strength but with equal fixed
and random components (2./')/2 = 1).

The effect of path disturbances on the performaﬂce of the system is
strikingly illustrated by considering Pe for the large signalfto -noise ratio in
the two limiting cases, ¢ = 0 and a = 0. In the former case, letting. A=A = -1

opt
. . (35)
(see Figure 5-1), we have from equation (4.19) :

. aZE]
CXP |- N
P - o (4.27)
© E 0o ﬁuZE
-
N, 2 N_

In the latter case, letting \ = )\.opt = O,V we have from equations (4. 21) and (4. 22)

P, ———r 1 (4.28)
E 20°E
N——roo
° o

As would be expected, the probability of error approaches zero with increasing
signal-to-noise ratio very much more slowly when the channel is perturbed by
severe path disturbances as well as by additive noise, than when it is perturbed
solely by additix}e noise. * It is interesting to note, however, tha.t the system

is capable of operatlng without error in the absence of noise even when the

channel has random path disturbances.

+ To est1mate the rate of approach of P to zero for large E/N for other values

of 2/’7 than the ones considered above (0 and o), see Figure 4-1.
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B. T Known: 6 Unknown.

The probability of error for a receiver with the likelihood computer
1
of equation (3. 12) is much simpler to determine. Since Am is a mono-

tonic function of [gml, it is evident that equation (4. 02) reduces to

pr =Pr | g, | > g, 1] (4. 29)

where we have primed Pe so as to distinguish it from the probability of
error calculated in the last section. In evaluating equation (4.29) we shall
assume that X\ = 0; this is the optimum correlation coefficient for a system
which has no phase information. *

Let us first assume that the path strength, a, is known to the receiver.
It is easily shown™” that the probability of error, conditional upon knowing a,
is

2
P! (a) = -;-exp [- ;N‘%} (4. 30)

The total probability of error is then Pé(a), averaged over a:

oo

P = S pr[a] P!(a) da (4.31)
0 ‘

pr[a] may be obtained from equation (2.05) by integrating it over 6. Using

this result in (4. 31), we immediately obtain™**

# See Section V.B, page 62.

#3 See Appendix VIII. For the general case of this result, for \£0, see
equation (37) of reference 34.

#4#% See Appendix VIII.
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P'e = E%Z exp [- T?BLY;ZTJ (4. 32)

Equation (4. 32) is plotted as the broken-line curves of Figure 4-1,
along with the curves of equation (4. 23). As we might expect, the advantage
of the receiver which has knowledge of the mean path phase-shift, §, is not
great, except in the region of high path phase-stability (small 2/')’2). This
advantage is expressed in terms of power in Figure 4-2, in which the ordinate
gives the increase in power which would be required in the system without
phase l;nowledge in order to reduce its probability of error to that of the
system which has phase knowledge. The family-parameter values of Figure 4-2
(average received-signal-energy to noise -power -density ratio) are those for
the latter system. |

Equation (4. 32) again illustrates the change, between the limiting cases
6 =0 and a = 0, of the rate at which the probability of error approaches zero
with increasing signal-to-noise ratio. For o = 0 (and, hence, B = 0), the

approach is exponential:

1 o.ZE ’
Pé = ~ exp l:- ZT\T:] : | (4. 33)

while for a = 0 (and, hence, 4= 0), the approach is inverse, as in (4.28).
For other values of 7 =a/r, the approach to zero is roughly exponential for
small values of E/No (small B), and roughly inverse for large values of E/N0
(large B); the point at which the change in behavior occurs depends on the

values of the path-strength parameters, a and o.
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CHAPTER V: THE MESSAGE WAVEFORMS: SPECIAL CASE

In this chapter we shall turn our attention to the second question we asked
in Section B of Chapter II: "What are 'suitable’' message waveformé for use with
the channel under consideration ?'' That is, we wish to determine the set of mes-
sage waveforms which optimizes, in some sense, the performance of the system.
As an optimization criterion, we shall choose the minimization of probability of
error, for this is the yardstick of system performance which is of primary im-
portance .to the communications engineer.

As in the last chapter, we shall only consider receivers which make a decision
by choosing the a posteribri moét probable message waveform; and these receivers
- only for the simple special case in which there are but two equi-energy, equiprobable
message waveforms, and only one path. We shall postpone comments on the more

general, multi-message-wavéform, multipath case until the concluding chapter.

A. 1 Known: 6§ Known.

As we have noted in the last chapter (see equations (4. 18), (4.23), and (4. 24)),
the only characteristics of the two message waveforms on which the probability of
error depends in the special case under consideration are their (common) energy,

E, and ,‘the\ifknvorrrvlalized complex cross-correlation coefficient, \ (see equation

(4. 12)).~ Thus, for a‘given energy, svpeciﬁcation of an optimal set of message wave-
forms consists merely in specifying that value of cross-correlation coefficient which
minimizes the probability of error. That is, we require the value of \ = ’)‘\ + j')\:. for

which the conditions

P
2 = 0 (5.01a)
AN
9P .
e - 0 | (5.01b)

>3
>t
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are simultaneously satisfied, and for which

2
. a
e o

2
9 P, , , .
—=7 2 0 (5.02b)
In addition, if we obtain more than one ksolutivon for (5.01) and (5.02), we require
the one which yields the absolute minimum of Pe' |
Now, it is easily seen from eqﬁaﬁons (4. 18) that Pe depends on the quadrature

N : . ‘
component, A, of the cross-correlation coefficient only in the square. Therefore,

we may write (5.01b) as

e e a0k | ,x e |, (5.03)
ZSFTC 2% IR

~
We thus have immediately a possible solution for \:

= 0 . | (5. 04)

It is difficult t§ show precisely tha.f this solutiogis indeed the one which we require,
i.e., that it satisfies (5.02b), and yields, in conjugction with some solution of
(5.01a) and (5.02a), the absolute .minimum of Pe' We may, however, construct a
plausible, but not rigorous, argument that this is so.- - |

The probability of error is the probability, én the hypothesis that §1(t) was

sent, that the decision variable, *

2 _
D= 5y deyl®-le + £ &) -8 (5.05)
(o]

is less than the decision threshold, zero. Now, roughly, we should expect that

*Cf. equation (4.03).
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the larger D is on the average, the smaller will be this probability that D is

less than the threshold. Thus, the problem of minimization of Pe with respect
to Awould seem to be related to that of maximizing D with respect to \. Of
coﬁrse, we should not expect in general that there will be a rigid relationship
between the tv;‘/o problems --- one may envisage special situations in which a
change in N, while increasing the average value of D, may so increase, say, the
variance of D, that Pe would also increase, instead of decreasing. But we are
interested a.t‘ this point not in exact solutions, but in trends, and for this purpose
an investigation of the problem of maximization of D with respect to A would seem
to be justified.

The average value of D may be obtained easily fram the characteristic function,

F,(s), by use of the relationship(36)

dF_(s)
= D
D = —d5 (5.06)
S=0
Applying (5.06) to (4.17), we obtain
D =k, +k, = p2@+7%) (1 - M%) + 287201 -3 (5.07)

1 3

'5\2 + 7\2, we see that settingh)‘\ equal to anything

‘Now, remembering that l)\lz =
other than zero will cause a decrease in the first term of (5.07) while not affecting
the second term; that is, D is maximum with respect to\ forX = 0. We may
perhaps obtain a better understanding of this result by using the fact that the first
and second terms of (5.07) are, respectively, the averages of the corresponding
‘terms in (5. 05):* on this basis we see that setting'x equal to anything other than

zero decreases, on the average, the difference of the squares of the correlation

envelopes in (5.05) while leaving the difference of the correlations themselves un-

*This may be shown with the help of equations (A6-6), (A6-7), (A6-9), (A6-12), and
(A6-13) of Appendix VI.
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affected, again on the average. It is therefore plausible that the solution X = 0
correspdnds to the minimum probability of error for any given value of /):

On the other hand, we may guess from (5.07) that the optimum value of *
lies somewhere between 0 and -1. For, although the first term decreases as’\
progresses from 0 to -1, the second term increases, and D will be maximum
somewhere between these extremes, depending on the values of g and ¥. We
should, in fact, expect from (5.07), as well as from physical reasoning, that
the following results will obtain: -

(1) for a path with no random component, i.e., with stable phase -

(0=0, V= oo, [372 finite): %opt = -1
(2) fgr a path with no fixed component, i.e., with completely_-random

phase (a= 0, Y= 0): % =0
phase (a = 0, —).XOP-

t
(3) for a very noisy channel (N0—> ©, B-+0): l):opt—" -1
3 — — . A —
(4) for a noiseless channel (No =0, B =o0): )‘opt =0

For the first and third of these conditions, the decision variable, equation (5, 05),
contains only the correlations, gl and gz; their difference is maximized on the.
average by making the two message waveforms antipodal, that is, by setting /)\\ =-1.
For the second and fourth conditions, on the other hand, the decision variable con-
tains only the correlation envelopes, ]gll and Igzl; their difference is maximized
on the average by making the two message waveforms orthogonal, that is, by setting
X =o.

The results predicted above may indeed be shown to be true By minimizing the

: A
probability of error with respect to A\, with X = 'Xo t = 0. The optimum value of X

P
thus found is shown in Figure 5-1 as a function of the channel parameters, 72,72 and

BY°.

strength of the random path-component to the strength of the fixed path-component.

The first of these parameters, it will be recalled, is the ratio of the average



-1~

[b62-vE-¢]

By?=0'

100

PO oo eman o e e oo o e

2.
o By

140y *IN310144300 NOILYI3Y

o
0.6

0.8

'|-0

1 '
40O WNWILO

2/y%

Fig.5-1

-34+3060

NEGATIVE PEAK

Fig.5-2



- 62 -
ZO'ZE

N
o

random path-component to the noise power -density. Figure 5-1 was obtained

The second, ﬁ'fz = ,» is the ratio of the average energy reéeived vié the
by numerical minimization of equation (4. 23).
Physically, the above results may be illylustrated as in Figure 5-2, which
shows a possible physical cross-correlation fuhction of the two umessage waveforms‘*
The fact that 'Kopt = 0 indicates that this fun’;ction passes thrbugh zero one-quarter
of a carrier period from the origin, and hence through an r.f. peak at the origin.

: A
The fact thatxo is negative indicates that this r.f. peak is negative. For channel

pt
conditions (2) and (4) above, the correlation function is zero at the origin as well as
at displacements of one-quarter period from the origin; hence the éo;'rélation func-
tion envelope is also zero at the Qrigin. \

We have untilwnow éssuméd for convenience that the modulation delay, T, and
the mean fixed-component phase-shift, §, of the path are zero. If this is not so,
the foregoing results still apply; the receiver restores the proble:ﬁ fo that we have

just considered by introducing an identical delay, T, and phase-shift, §, into the

stored message waveforms (cf. equations (3. 05) an& (3.07)).

B. 7 Known: & Unknown.

In this case, when § is unknown, the receiver makes its decision according as
the diffe'r‘earice, Igll - Igzl, is greater than or less than zero (see Section IV.B,
page55). In the light of the discussion in the last section, it is clear that this dif-
ference is maximized on.the average by setting x = 0, so it is plausible (as well as
satisfying to the intuition) that this value of Awill minimize the probability of error.
Thus, optimally, the envelope of the correlation function in Figure 5-2 goes to zero

at the origin.

*Of course, both the carrier period and the amount of phase modulation in this Figure
are exaggerated for the sake of clarity.
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CHAPTER VI: CONCLUDING REMARKS.
In anéwering the bqué stions we asked in Section I.B, we have made the follow-
ing festricfi;)ns and assumptions:
(1) The additive noise is stationary, white, Gaussian, and statistically
independent of the multipath medium (sée page 10);
’(2) The paths of the multipath medium are statistically independent of
one another (see equation (2.07), page 15, and the discussion pre-
ceding equation (3. 17), page 40);
(3) The paths are resolvable, i.e., their modulation delays satisfy con-
ditioﬁ (3.,06) (see page 35);
(4) The medium is non-time ;Qarying, at least for the duration of a mes-
sage waveform (see page 32);
(5) Thé system performs on a per-waveform basis (see page 32).
In addition, in evaluating.the performance of the various systems derived in
Chapter III, and in determining optimal relations among the message waveforms,
we have assumed that
(6) The receiver's knoWledge of the multipath medium is a priori knowledge,
vand correctly represents the medium (see page 46);
and vs}e have restricted ourselves to consideration of the special case in which there
are only |
(7) Two eqﬁi-energy, equiprobable message waveforms, and one path,
(see page 45). |
Avenues for future work are ‘immediately suggested by these assumptions and
restrictions; that is, we may ask for the solutions to the problems we have invest-
_igated, but w1th any or all of the above assumptlons and restrictions removed We
shall comment br1efly here on these various possible extensions of the present work.
The aséumption that the additive noise is Gaussian would seem to be realistic

enough in most practical cases, and extension of the analysis to non-Gaussian noises
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would not at present seem to be worth the concomitant severe complication of
the mathematics. Similarly, the assumption of the inde‘pendence of the noise and
the multipath medium is in most cases justified. For, eveh if some or all of the -
noise arrives at the receiver from distant noise soufces b}t ‘way~ of the_multipath
medium, it would almost certainly traverse a different region of the thedium than
that traversed by the S1gna1 and these two regions would in general be statlstlcally

independent. It is of course this 1ndependence of the noise and the s1gna1 ut111zed

region of the multlpath medium which we have in miad in the last part of assump-

tion (1).

A clue to the extension of our probability-computer results to the non-white
noise case may be taken from the equivalent analysis for a channel which is dis-

(37, 38, 9'). In this case it has been shown that the received

turbed 'by noise only
signal is correlated not with the stored message-waveforms directly, but with the
stored message -waveforms after their modification by linear filtering. In part-
icular, for T > —= W » the modifying filters have a (common) transfer function~which“
is equal to the reciprccal of the noise power—density‘ spectrum, N({f). Intuitiveiy,
one would expect the same results to apply in our case. | |
We may easily extend our previous work fer the case of stationary noise to
the quasi-stationary case, in which it is assumed that the noise is stationary at
least for the duration of a message waveform. For this latter case, our previous
results sttll apply, ‘but now the parameter No’ or more generally, the noise spec-
trum N(f), will vary from message waveform to message waveform, along with the
other channel parameters, a;s o-l, 5. i Ty The more general non- statlonary case
is of course considerably more cotnphcated and of dublous pra.ct1cal interest.

‘The assumptlon of 1ndependence of paths is most probably a realistic one, for

dlfferent paths generally pass through 1ndependent regions of the multlpath medlum

One except1on to th1s, which is of p0551b1e interest, is the case in which some or all
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paths have a commbn random attenuation (e; g., in the case of an ionospheric
medium, where éo¥ne paths may pass through a éommon fegion of an absor-
bing layer; sa&,”’:che "D" layer). This case would probabiy lend itself easily
to analysis. Be s;des this special case; howevér, it is doubtful whether a
generalizafion to the dependent-path case would be worth the labor.

- As we have noted in Chapter II (see page 23), assumption (3) may be al-
most automatically satisfied, for if two paths are completely unresolvable,
they may be consideréd a priori as a single path. To be sure, there is a no-
man's-land iﬁ which two paths neither can be considered to be completely un-
resolvable nor can strictly satisfy (3.06); this is the small region in which

w

ever, one would expect few delay differences to fall into this category, and one

the difference of modulation delays is approximately N . In most cases, how-

would feel .t.vhat our results .would apply with no great error if we established a
‘sharp line of demarcation between "unresolvable" and "resolvable" delay dif-
ferences, say, —é—v.-, we would then arbitrarily consider as a single path all
paths whos.e modulation delays differ by less than this amount, and consider
as completely re solvablel: all paths whose delays differ by more than this
amount. The only important case in which this technique would be suspect,
and in which a more general analysis which does not make use of assumption
(3) wouid be in ordér, is the case where there is a continuum of paths; for,
in this case, large numbers of delair differences would fall into the no-man's-
land categéry, that is, near the line of demarcation. The more general anal-
ysis of the';pro(bability computer has in fact been performed by Price for the
épecial case in \#hich the paths have no fixed components(sa).

: Assumptio-n's (4) and (5) were made in order to avail ourselves of the simpli-

city of analysis which evolves from use of only the first-order joint distribution

of the multipath characteristics. The obvious generalization is to eliminate the
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necessity for these assumptmns by taking into account h1gher -order distri-
butions. ¥ Again, Price has done this for the spec1a1 case in “’fhlch there are
no fixed path- components( a). Extension of his excellent Qork to the case in
which fixed path-components are present would be of great intere st

Elimination of assumption (6) would aliow the détefminatibn of the effecf
on system performance of errors in the receiver's a priori’ knowlaedge of the
multipath medium. It would also allow the evaluation of the performance 6f
the system when the receiver's knowledge of the medium is based on measure-
ments, and would enable a comparison to be made between system performances
with and without the benefit of measurements. |

Extension of the analyses of Chapters IV and V to inore géneral ca\m_ses.than ’
that of assumption (7) would be of great iﬁterest, but also, unforturia}:ely; of
great difficulty. A simple extension of the probability-of-error a.néiysis of
Chapter FIV which would give an insight into the relative effects on systém perfor-
mance of the different paths of the medium would be the evaluation of Pebfobrv |
the case in which there are two paths of equal.total energy: it would be inter-v
esting‘to determine how rapidly P, increases as one path changes from a
purely-fixed to a purely-random one, while the other path‘ reméins, say, purely
fixed. |

In regard to the extension of the work in Chapter V to the general M ~wave -
form, L -path case, it seems clear that the minimization of probability of error

M(M-1)
MM

would be with respect to . [L - (L-l)] complex variables instead of

Jjust one as in Chapter V. These are the values, at the LZ -(L-1) . distinct

M(M-1)
Lo to),

delays, T T (i, k=1,...,L), of the complex cross-correlation

~ - .
function modulation-waveforms, i ‘3 x;(t--ri)xm(t-Tk) dt (p£m). When the " .

*  See footnote, page 32.
+¢ We say M(M-1)/2 modulation waveforms, instead of M(M-1), since these
waveforms come in complex-conjugate pairs.
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fixed-component phase -shifts, (61), are unknown, one would expect that minimum
probability of error weuld occur when all of these variables are zero, that is,
when the envelopes of all the message-waveform cross-correlations go to zero
at all delay differences, Ty The
When the paths are not completely re solvable, and a more general probabil-

ity computer which is not based on assumption (3) is employed, an additional

M ﬂz]-"—-—ll variables are added to the minimization problem: the values, at the
L(L-1) , + » .
— rpodulatmn delays, Tt Tk ('ri >Tk), of the M complex auto-correlation

fu.n.c‘tien‘ modulation-wavefqrms, S‘ x:n(t—ri)xm(t-'rk) dt. These are assumed
to be zero in the resolvable -path case. Finally, if the waveform energies are
not cen51dered to be given originally, an additional M energy variables |

(5 lx (t)l dt) enter into the problem.

Another problem of interest is the evaluation of the probability of error for
the ca.»se'where the 'ri's a.re unknown (Section III.C). Minimization of probability
of error in this case would involve specification of the complete ——2— auto-
and cross-correlation functions of the M message waveforms, or, more pre-
cisely, their envelopes. Ideally, one would like to have all of the cross-
correlation envelopes vanish for all values of their arguments; but there are
probably physical-realizability constraints which prevent this, and these would
ha\%e to be taken into account in the minimization problem.

In Chapter I we split our aealysis problem up into nearly-independent parts,
but noted that this wés for convenience of analysis, and that, more strictly, the
problem should be considered as an integrated whole. Perhaps the first step
that should be taken in the direction of integration is that of considering the
‘channel-measurement and probability-computer problems together. That there

should be some intimate connection between the two problems would seem to

¢  We 'say L(L-1)/2 values, instead of L(L-1), since the complex auto-correlation
functions are (Hermitian) symmetric about the origin.
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be indicated by comparison of the results of Section ;II.‘B. 1 and of Clylapt‘er II>I;'
these show that precisely the same operations of correiation and s’amplingka.re
used for channel measurement and for probability computation. One rriay ask
such questions as: Should the message waveforms themselves'ﬁ.rst be co‘n-
sidered by the receiver as channel-sounding signals, and then the hypothetical
channel-characteristic distributions so obtained used for probability comput-
ation?* Or, perhaps, should known channel-sounding signals and messége
waveforms be sent alternately, and if so, what proportion of the tranéf_nissio‘n
time should be allotted to each? Is there some form of measurement already
implicit in the probability computers of Chapter III, as some of Pricefs wdrk(sa’)
would suggest?

Besides the questions relating to integration of the problems we have in-
vestigated sepal;ately, there is a whole group of questions relating to problems
\;ve have not even considered. How, for example, can we supply the transmitter
'and receiver with identical information about the channel, as we have assumed
to be the case ? By transmission of the transmitter-to-receiver sounding data,
which is available at the ’receivef, back to the transmitter? (How will channel
disturbances affect this transmission ?) Or, kperhaps, by establishing a separate
receiver-to-transmitter sounding link ? (Is the channel reciprocal? )

We may put the gist of this chapter in just a few words: there are still many,
many questions which must be answered befor¢ we may say that we have a thor-

ough understanding of the problem of multipath communication.

# Cf. footnote, page 33.
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APPENDIX I: THE COMPLEX CORRELATION FUNCTION

The real part of equation (1.0L4) is

V)= j[e‘(t) ﬁ(t-m Ew) R av (A1-1)
in which

é(t)= g(t) cos 2nf t -‘§(t) sin anot (A1-2a)

£(t)= £(t) sin 2nf_t + %(t) cos 2nf % (A1-2b)

A ~
and similar expressions hold for q(t) and r](t). From (A1-2b)

Free 1y 1 TP A
E(t*'ﬂf;) = x(t+ Ef;) cos 2nf b - x(t+ E?;) sin Zﬁfot (A1-3)
Now, it has been assumed that &(t) represents a narrow-band waveform.

This implies that x(t) remains essentially constant over many cycles

of carrier, so that we may write x(t+ 1 ) = x(t), and hence
g Il_f— >
: o

F(or 1) = E(t) (A1-L)
E(t+ L, 13 .

Similarly,
(e ) - ?](t) (A1-5)
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» A
The cross-correlation function-of the physical waveforms, ¥ (t) and q(t),is,
A A .
Pl)= | Z(t) N (t=z)at | © (A1-6)
But from (Al-L) and (A1-5) we have also
5 ~
lP(T)= E(t) r\(t~r)dt (A1-7)
from which it follows that
A ’ ~
U(e) =2 p() (A1-6)
which was to be proved.
By inserting (Al-2a) and a similar expression for ﬁ(t) in (A1-6),

one obtains, after some trigonometric manipulations and the use of the

narrow-band assumption to eliminate integrals of double-frequency terms:

(Pér)= A(t) cos 2ﬁf6t + B(t) sin 2nf6r »(A1-9).

wherg
Alt)= % X [;‘E(t)}(m) + ;’Z(t)i}‘(t-m)] dt (A1-10a)
B(t)= - 5 S [X(£)7(t~) - R(£)F(t)] at (A1-10b)

The envelope of W(t) is just \/A?+ %2 . But the magnitude of \P(t), equation

(1.05), is just twice this, or 2 JA2+B2 » which was to be shown,
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APPENTIX II: A POSTERIORI DISTRIBUTION OF MULTIPATH CHARACTERISTICS

Using (2.02), (215), and (2.07), (2.14) may be written as

. Tl
pr[(a,), CHZCHRA{E K[Tlf a,] exp [’,'z‘leSc,'“*‘"’l“"| 2qt

. |
'-Z aj-2a.a, cos (9{‘%)] (A2-1)

: 20
i

He o[

where the factor

K = 1 .

(ZRWﬁNo)leﬁ

el
exp|- ,
_IT 205 (A2-2)

1 .
pri¢/(c; s8] 1y ops2

is independent of (ai) and'(ei). Tt is the duration of q(t), the output of
the multipath medium; it is greater than T, the duration of the sounding
signal, because of the spread of the delays in the medium. Using (2.06)
for q(t) and writing Z(t) = z(t)ejznfot, the first term of the exponent

of (A2-1) may be written (dropping, for convenience, the limits on the

integral) as

1 SEAE: |
Eﬁ;—.glz(t) - :g:aix(tari)e il e gt (A2=3)

We write, as in going from (2.10) to (2.11),

S z*(t)x(t-ﬂ:i)'dt = g('ri) (A2-L)
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and also
Xx*(t-fri)x(t-rck)dt = 4f('ri-¢k) o o (42-5)

(cf. equation (2.09)). Using’ _(A?-h) and (A2-5), we may rewrite (A2-3):

Z—Ll:gz(t)lz dt - 2 Za Re[g(fr )e 7 l] zza & f('c Ty eJ(e:L ek)J

(A2-6)
Substituting (A2-6) into (A2-1), we get
, 1
pr[(a ),(0.)/(x.),C E] = K [ ] eXp[-§ Zl kcika:.ak + Z: dlal]
(A2-7)
where
wones [ ol s
j(6,-0,) ;
e T L) e T K 4L © ik (A2-9)
) o5 ‘
g('ri) ai jJi -jei 5
d; =Re { T +~o-,?f e }e | | | (A2-10)
i - S

€ 4; in (A2-9) is unity for i=k, zero forf‘i%l_{. In order for (A2-7) to be
useful to us, we should like it in .the. form of ‘the product of first-order
distributions. This will occur if the double summation can be written as
a single summation for all values of (ai), (ei), and ('ci), for then

(42-7) is a product of exponentials, Thus, we require that cik =0
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(ifx) for all (a.i), (ei_), and ('ci), or at least cik«cii (ifk). Noting

that £(0) = !P(o) = 2E, where E is the energy of the sounding signal, this

last condition leads to

1 1 28, 1 -
N Ifi(f‘i“‘k)l " §, I‘P(Ti"”k)l« w2 all ifk
3

(A2-11)
from which (2.16) follows immediately. Using (A2-9), (A2-10), and
(A2-11) in (A2-7), we have, after some algebraic manipulation,
a?_-za;ai cos (ei-d;)
pr[(a.),(e.)/('r.),z,f] = K! I lam exp| - (A2-12)
. + * i * 20!2
i

wherea! ,c]!_, and d‘:{are given by equations (2.18). To find K', we integrate

(A2-12) over all values of (ai) and (Gi) and equate theresult to unity.*

n+6 I | 1\2
s a.-2a.a.cos (0.-4.) a!

%, = | ‘ g a,exp| - =—>22 5 = 2 do.da, = l I(chlz)exp[% (——J,'-) ]
idoJdoneg T t 1 i. .t %3

Z
(A2-13)
(2.17) follows directly from (A2-12) and (A2-13).
In order to derive (2.22) we note that
| pr((z.)] pr[Z/(x.),E]
pr{(5,)/6, 8]« —A et (a2-10)
But from (A2-2), (A2-8), and (A2-13)
1 \2
pr[ﬁ/cri),z] = K"-Ijréxp[ % (g%—) J (A2-15)
i i

* For the evaluation of (A2-13), cf. reference 2l,



-7 -

where K'' is independent of ('ri). Equation (2.22) results from inserting

- _ L. . K'!
(A2-15) in (A2-14), and letting C —p—r—[ﬂE—T .
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APPENDIX III: MINIMUM-MEAN-SQUARE~ERROR MEASUREMENT OF AN UNKNOWN

IMPULSE RESPONSE

We desire the solution of equation (2.25):

. |
JE =JEN,M |:-:AL g {g(t) - hm(t)}z dt] =0 (AB-l)
Expanding this, we obtain
r e A '
By u [ S g(t) 5g(t)dt:| = EN,M [ S h () Jg(t)dt] (A3-2)
o O

since ma(t) = 0. Now g(t), as indicated in Figure 2-5, is the output of the
estimating filter, whose unit-impulse response is hth). If y(t) is the

filter input, then

0o
g(t) = S h_(T)y(t-7)dv ’ (A3-3)
y(t) is, in turn, the sum of the noise, n(t) and the output of the
unknown filter, whose unit-impulse response, tht), is to be estimated.

That is

, ® : -
y(s) - S b (®)x(tx)cc + n(t) (13-1)
-00
where x(t) is the channel input (sounding signal). Combining (43-3)
and (A3-L):
o)

' ' 0
g(t) = SS he('t)hm(o)x(t-'t-cr)dcdr + She(’r)n(t-'c)ch: (A3-5)

- ' -®



- 76 -

The variation of g(t) is thus

®
Jg(t) = &&hm(o) X(M-O’)dhe(’c)dﬁdr'F S n(t-fr)Jhe(*c)dr (A3-6)
-0 . -0 -
Remembering that h(t) and hm('r) are independent, and assuming that
EN[n(t)] = 0, we obtain for the right-hand side of (A3-2):.
~00

Ey [ SA S X hm(t)hm(c)x(t-fr-o)cghe (tv)dodrdt ] ‘ (43-7)
0 . .

Similarly, the left-hand side of (A3-2) is

A (0 0]
b [S SSSS B (7" " g (o)x(t-r! ! % (t-7-0)8h, (7)o" dv* dodrat
T = - - .

o V)
(e o]

+Ey [A g ghe (1 )\PN('r-'c' )Jhe(fc)dt'dr] : - (A3-8)
=00
In deriwing (A3-8) we have assumed statistically-stationary noise with

auto-correlation function

Pylr) = Ey [n(t) n(ten)] | - o (a3-9)

_ Since we haveassumed (cf. page25) that A is essentially greater than
the duration of h_(v), the limits on the first integral sign in (A3-7)
" may be extended to .(- ®, +m) without changing the value of the integral.
The same sigatefr{e’nt may be made aporoximately about the first term in
(A3-8); for this term is the product of the integral of the " signal!! B

component® of the estimate of hm('r) and the variation of this component,

“I.e., the first term in (A3-5).
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and one would not expect the signal component to last appreciably longer
than hm('r) itself.,

Thus extending the limits, and equating (A43-7) and (43-8), we get

© ©
S (?he('r)cfr-EM %ggghe('t')hm(o')hm(o)x(t-fc",-o')xv(t-fr-o)do"dc'dodt
- 00 - ' '
©
+ A S\ he('c')!pN('t—fc')dt‘ - Sghm(t)hm(c)x(t-m-a)dcdt =0
- -0 (A3-10)

We neglect the physical realizability condition, he(’U ) = 0 for
T( Oj' Then Jhe('c) is arbitrary for all T, and in order for (A3-10)
.to be satisfied, the factor which multiplies Jhe('r) must be zero for
all v, Setting it equal to zero, Fourier transforming the resulting
equafion‘*, and averaging over the ensemble of all possible unknown

filters, we obtain

2 ‘ S

B () |5 0 [x@)|%an, (N - 1@ 2¥@ - o

opt m opt '
(A3-11)

Equation (2.26) follows from this immediately. In order to show that

this solution yields a minimum, rather than a maximum or inflectional,

error, one merely finds the second variation of €, and shows that this

is positive for H (f) = H ().

e e
opt

To derive equation (2.33) for the optimum spectrum of x(t) s We

start with equation (2.2L) for the mean-square error. Using (A3-5) in

**See discussion, page 26.

** cr. equation (1.07b), Chapter I.
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this, and remembering that the average of the bracketed expressibn in

(A3-10) is identically zero, we obtain for the minimum mean-square error

00 o .
€ = % Ey [S hi(t)dt - &g Shm(t)hm(o)heo t(’t)x(t-ft-c)dod'rdt ] |
LV oo AR (A3-12)

-00
em is also expressible ig terms of frequency domain functions; using

Parseval's theorem in (A3-12) and averaging:

-m

€ =1 Sa_lem(f)lzdf - S H (6) |5 (0)|° x(0)ar | (a3-13)

00 -5 opt
Using equation (2.26) for H, (£), (A3-13) becomes _ .
opt’
© .
1 2 |x(£)] 2
€, =3 |\ [E@] [1-—L = | (A3-14)
) N_(£)<a+|X(£)
where Nr(f) = -'N_(f‘)? o We now constrain the energy in the
H (f)
m

transmitted waveform to be constant?

o |
X |X(f)|2df =k | (A3215)

.‘m

In order to find the optimum X(f), we must solve the variational

problem(26)

§(e_+2K) =0 (43-16)
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%Mekmsmgwmmm.Uﬂ@(BdMam(Mdﬂ,M}m)mwms

00 S
v_(£) |u (£)]%.a L
S {_l- A0 [#,) >3 }Jlx(f)lzdho (A3-17)
[+ |x0)]?] _

-
If we constrain |X(f)|2 to be zero outside a certain band, Fl (cf.
equation (2.31)), then 8|X(f)l2 is also zero there, and (A3-17) is
satisfied for those frequencies. For frequencies within the band, on
the other hand, we must try to set the bracketed term in the integrand

equal ’co‘zero."l This leads to the equation

A IX(f)Ih * 2>\m\1r(f)|x(f)|2 * Nr(f)a[xaur(f) - IHm(f)Iz..]‘= 0.
| - (A3-18)

If (A3-18) and (A3-15) can be simultaneously satisfied within the
band F1 by a non-negative function |X(f)|2, then the solution is
complete. If, however, there are frequencies at which |X(f)[2 would
be negative, then the correct solution is simultaneously to satisfy
(A3-18) and (A3-15) at all frequencies for which lX(f)|2 turns out
non;negative, and to set IX(f)lz equal to zero at all other frequencies,
as indicated in equation (2.33). That this is indeed the correct

solution may be shown by taking the second variation of (En1+ AK):

@ T (]2
02(€_+2K) =2 g ) [y
m (v () + |x(6)] %]

-0

[8]xo)°]* ar

(A3-19)

* One might be tempted to obtain another solution, X(f) = 0, by
writing 8|X(f)|2 = 2|X(f)| Slxif)l. This is a spurious solution,
-however, for the problem is actually phrased completely in terms of
|x(£)|2 (ef. (A3-14) and (A3—15g). The second solution would
disappear if we replaced |X(f)|2 by, say, S(f).
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(A3-19) is positive for all variations of 'X(i‘)lz. This implies first
that the solution of (A3-18) is in fact a minimum, and,sfecond,,jbhat the
further |X(f)'2 is varied from this s'ovlution, the larger is the ‘error.
Therefore, one must satisfy (A3-18) as closeiy as possible, and for.those
frequencies for which the solution is negative this is achieved by
setting IX(f)IZ equal to zero, |

Finally, equation (2.35) follows directly on substitution of

(2.33) into (A3-1k).



- 81 -

APPENDIX IV: DERIVATION OF LIKELIHOODS. ;

Using -(2.02), (2.05), and (2.07), the integrand of the (ai)-and"

(ei)-integrations of (3.03) may be written as

L a. X! |
1 T [-l—|— l2 exp | - %*No- g lZ(t)"V](m)(t)lz dt

iy ) ¥ Li=1 27 0
L 2 2
) z a;+a;-2a 3 cos (ei-cfi)
. 2 S
i=1 20

(AL-1)

where T' is the duration of V](m) (t), which is given by (2.06), with -
x(t) = xm(tb. The expansion of the first term of the exponent of (AL-1) :
follows exactly the derivation from (A2-3) to (A2-6) of Appendix II,
with the waveform index, m, inserted at thevappropvriate places.

Assuming the validity of (3.06), and noting that fm(o) = th(O) = 2Em’

(AL-1) becomes, usizéng (A2-6):
as

i
a. exp |- —=
L i 2 :
- 20 E g . a, jd.\ -jo,
l l i m 1 2. mi, ~i i i
c - 5 exp -(N-;-v-ézz aifRe(N-;-ﬁ-—Ee )e ai
i=1 no3 i %
(ALh-2)
where
Tl
1 1 2
¢ = o exp | - |2() [*at (A4-3)
T WN' ZNO .
(2nWNN0) 0 :



is independent of (ai), (ei), and m, and we have writteg g = gméui)
(cf. equations (3.0L) and (3.05)). We obtain equation (3.07) by
integrating (AL-2) over the variables (ai) and (ei), For these integrations

(2h),

we need the results

/

n+c
2 en o :
= S exp [Re(ere™)]a0 = 1) (loy) RSN
-n4C
2,
and 00 2 2 .
-038- 1 ch ‘
g ae I (ca)da=5— exp|— (&h-5)
(o] }J, 203 }-lC
o 3

In (AL-L), ¢, is generally complex. In using (Ah-L) in (AL-2) we

note that
- . 2 2 . 1
T AN | W -8 172
‘N‘— L -—z— e a.i = F + —2- +* 5 Re gmi e ai
o c j o, N o.
i (o] 1 0o 1 (A)-L-é)

The derivation of equation (3.12) from equation (3.07) involves
merely a straightforward application of equation (AL-l).
In deriving equation (3.1h), we first write equation (3.07)

in the form

02 2,2
L L — Igmil 2B L -3d;
/\ 1 No -Jp a.g_.e
=C I | exp exp|Rede ™ j{: T m_
m 148 . 2N (148 _.) N (I+8_.)
i=1 m =1 ji=3 °© ™
(AL-7)

where pn1is the random phase-shift of the mﬁh message waveform.

Then, (3.14) follows directly upon use of (AL-L).
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APPENDIX V: CHARACTERISTIC FUNCTION OF A QUADRATIC FORM OF GAUSSIAN

VARIABLES,

We are given a quadratic form,

D=W, QW (A5-1)
of n variables,
"1
2
W = . (A-S'z)
W
<3 n«-l
which share a joint Gaussian‘distribution529)
o] - ——2— e |- F (M | (15-3)
'n 1
(2n)® | u?

Q is the matrix of the quadratic form, W is the matrix of the means

of the variables:

=]
L1}
|
NSlHiHl

(A5-L) |

:32”‘ ° o
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and M is the moment matrix of the variables, the typical element

of which is
my = (wi-wi) (wj-wj) = W W - W . (A5-5)

Mt denotes " transpose of', and

...I s " determinant of'!,

We require the characteristic function of the quadratic form:

FD(ju) = oW . SS\ L pr[w] dwl"'(;iwn (45-6)
-00
n times

Noting that M, and hence M.l, is symmetric, we may write
WM = (W), = Wty (A5-7)

The last equality follows from the fact that WtM-lw is a one-element

matrix. Using (A5-7), we find

(W) ML (W= = th;lw - WM 4 Wtﬂ‘;l'vf (A5-8)

Then placing (A5-1) and (A5-3) in (A5-6), and making use of (A5-8),

we obtain

- d s =1 = ® o ‘
FD(ju) = exp[;-é- wt:lf W] S . S exp [WtM-J'W] exp[- %’Wt(M_l-Zqu)W] AWy e e

N2 2 -
(2x) I Ml n t?.omes (45-9)



- 85 -

Using a result given by Cramér(Bo) > (A5-9) becomes

exp [— _ % WtM']W] exp [% Wtﬁ-l (M'i—Zj w) “brlg ] ‘

F‘D(‘;ju) =

T 1
IMI? 'Mfl-zquIZ

Finally, noting that

1

’(Mfl-zqu);l M- o= (1-2juMQ)'1

* (A5-10)

(A5-11)

we may immediately obtain equation (4.08) from (A5-10). I is the

unit matrix.
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APPENDIX VI: EVALUATION OF MATRICES OF EQUATION (L4.08).

Substituting eqﬁation (4L.07) in:(L.06), we obtain . =

g = ae¥® S'xl(t)lzdt + gn"(t')xl(ﬁ) at

g, =aed® gxl*(t)xz(t)dt + gn*(‘t)xz(t)dt

Noting that (cf. equation (4.12)

X |x1(t)|2'dt = g |x2(t)|2dt = 2E

Kﬁ*(t) x, (£)dt = 2B
and letting

P = Z,aIEeJe

and

n

g = Sn*(t)xi(t) dt i=1,2

we may rewrite (A6-1) as

gl'"‘P"’ql

pA *a,

(46-1)

(A6-2)

(A6-3)

(A6-1)

(A6-5)
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In order to obtain the means and second self- and cross-moments
of the w;variablés of equation (L4.OL), which are required for W- and
M-matrices, it is obvious that we must have the means and second self-
and cross-moments of the real and imaginary parts of gy and e These

real and imaginary parts are, from (A6-5):

A A A

& =P+ q

~N ~ ~

8, P + qQ

B =P -+ G, (A6-6)
A

gz = '}:S\ ""?3)\ + ?1'2

Since we have assumed: (without loss of generality) that §= 0 in the

joint distribution of a and 6 of equation (2.05), we may write immediately

(16)3*

for the various moments of D and p, using results of Rice

B = 2aE

T-0

B2 L(cP4?)ER . | (A6-7)
§§ = Lo’E |

3% =0

From (A6-L), we may write

Q>
e
[}

g [ﬁ(t)?ci(t) ¥ 'f{(t)g’ci(t)] dt

a2
Moo
]

X [A(0)%; (+) - D(8)X, (+) ] a (46-8)

+ Cf. Fig. 2-2, in which let = 0, and multiply all vectors by 2E.
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Noting that A(t) = n(t) = 0, we have immediately

ai = 'a'i =0 i = 1,2 (A6-9)

Now , for all praétical purposes, we may consider thevbandwidth of the
noise, Wﬁ, very much larger than the transmission bandwidth, W.

Then, to a very good approximation, we may consider that

() n(s) = A(t) Als) = N §(t-s)

(A6-10)

where §(x) is the Dirac delta-function. We also note ﬁhat(lg)

At) m(s) = 0 (A6-11)

Using (46-2), (A6—10),'énd (A6-11), we obtain for the various second

self- and cross-moments of the real and imaginary parts of 9 and
a, of equation (A6-8):

N ~ A
@9 = % = 2NEN (A6-12)
e _ NA

Finally, because of the assumed independence of the noise and the

multipath medium, we may write for the cross-moments of the real
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-and imaginary parts of p and 9 and 9t

Al =7F =

pa, .E.E? 0

A A o

Pa, =pq, =0 - \ ' -
37"1 —:,'A—l 1=1,2 (46-13)
Pq;, =pq; =0

~ o~ =_:3:T = 0

Pq; =pqy

We have thus evaluated (equations (A6-7), (46~9), (46-12), and
(A6-13)) the means and the various second self- énd cross-moments of
the real and‘imagiﬁary.parts of p, 9 and %G . Using these, we may
obtain the means and second. self- and:cross-moments of the real and
imaginary parts of g and 855 which in turn may be used toevaluate
the W, 's and the m; ;'s of equation (L13).

In order to obtain the inverse of the moment matrix, which is
required in equation (L4.08), we apply the following identity to

equation (L.1l):

a0 b ¢ d o -b -c |
0 a -cb 1 . o d ¢ -b
= "———é——z- (Aé-lh)
b ~cd o (ad=b"-c%) -bec a o
c b o d t-c -b o a i

Post-multiplication of the M-matrix by the Q-matrix changes
the signs of the elements of the last two columns of the M-matrix.
‘Multiplication of the MQ-matrix by the scalar, 2ju,and subtraction

of the result from the unit matrix leads to:
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B+1- 538 0 -\ (p+1) -A(p+1)
1 ~ - A
0 B+1~ 2508 , x'(3+1) | : ~-n(p+1)
I-2jumQ = -2jup ~ o '
M) K s 0
A | 2 .1
] %(g+1) X(p+1) 0 -] 1555 |
(A6-15)

In inverting the (I - 2juMQ) -matrix, as required in equation (L.08),
we again make use of (A6-1h), The determinant of the (I - 2juMQ) -

matrix may be evaluated through the use of the relation

o a =-¢ b :
K ' = @ (aat?-H)? (A6-16)
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APPENDIX VII: DERIVATION OF EXPRESSIONS FOR Pe‘

We start with equation (4.11), in which we substitute equation

()-hl'?) for FD(S):

kls(1+kzs)
: . Jjoo exP[i-k3s(1+kzs)]
B == 2nj ‘g' S [1—335(1+k23)]

‘-jCD

ds (A7-1)

where kysk,, and k3 are given by equations (4.18). The path of integration
is taken to be indented to the left at thevorigin. We may immediately
obtain Pe for the special case, o = O, by noting that, in this case,

kz =2 and k3 = 0, so that

. 2
‘1 joo eZkls kls‘ |
Fo="my | T e s (A7-2)
_J'm
. ‘ 2kls2
Equation (A7-2) is in the form of the Fourier transform of - & ra—

which'is available in tables(32). Thus, we obtain for o = O*:

P, = % [1:- erf(% Y, k1/2)] (A7-3)

+ The tables referred to actually givs the right-hand side of (A7-3)

‘ : : 2k.s ‘ :

as’ the sum of the transforms of -e 1 /s and 1/s. However, the path

of integration in the tables is takent o be indented to the right at

the origin. Now, the left-indented integral in' (A7-2) may be written '
as’ the sum of two other integrals having the same integrand: one along the.
J-axis with an indentgtion to the right at the origin, and one along a
closed contour of infinitesimal radius which encireles the origin., The

o _ : 2k s
first of these is'the right-indented transform of -e “ /s, and the
second may'easily be shown to be equal to the right-indented transform
of 1/s. Thus, the .right-hand sidg of (A7-3) is also equal to the

. 2k.sc
left-indented transform of -e /s, equation (A7-2).
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This, with equations (4.18), leads directly to equation (4.19).
We may evaluate Pe for the case a = 0 by the method of residues.
For this case, k, = 0. Writing (A7-1) in terms of the roots, r, and r,,

of the quadratic, 1 - k33(1 + kzs)’ we have

rr, %
Pe = "215% S s(S-rl%(s-ré) ds | (h7-4)
~joo
where
] -1t ‘/ 1+ %
. " % (A7-5)

nt

P
T

Since the integrand of the integral in (A7-L)  contour of

vanishes as —%—as s+, we may close the path
s
of integration by enclosing either the left

or the right half-plane, without changing the

value of the integral., Since the j-axis path r1
is taken to be indented to the left at the
origin, the former contour encloses only one
pole of the integrand (see Figure A7-1), that o
FIGURE A7-1

at s= ré(ré<10), and the integral may be evaluated by calculating
the residue, R, in that pole, and multiplying it by'2nj(33):

P = -rrR (A7-6)

Y

|34
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R is easily calculated:

: 1 S ' .
R = — (A7-7)
rzlrz-rli

Equation (4.21) results from the substitution of (A7-7) into (A7-6).
In the general case (o # 0, a # 0}, equation (A7-1) may be
put in a better form for numerical computation by the following
method. We first shift the path of integration from the j-axis to
the left by an amount 5 2k2 this does not change the value of the
integral because no singularities of the integrand are crossed in
the.prqcess (eee FigureAA7-1; the singhlarities at rland rz'are now
essential singularities). Then, makingAthe change of variables,‘
S =:§%E (jz-1), and noting that the imaginary part of the resulting

integrand is odd about z = 0, and the real part even, we obtain

ks(z2+l)
2 ® exp{} 2 .2 ]

‘ k-1 z° 4k
P, = —ff——— g “ (A7-8)
o o (Z "'1)(2 “'kh)
where khand k5 are given by equations (4.24). Now, making the
further change of variable, 22 = ki tange, and noting that

1 + tan%0 = seczé; we obtain the desired result, equation (4.23).
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APPENDIX VIII: DERIVATION OF EXPRESSION FOR Pé.

We write, as in equation (A6-5) of Abpenaix VI:

- 36
g, 2ake tq )
= ' (A8-1
B % %
where we have used the assumption that A = 0. 8 and g, may be
represented vectorially as in Figure A8-1. 8,0, } Im
‘ 2
Now, the real and imaginary parts of 9 and
q, can be expressed in terms of linear 9
—»Re
operations on the Gaussian functions‘ﬁ(t)
n . 28
and n(t). (Cf.‘equatlon (A6-8).) Hence( ),
A
9 and a; are also Gaussian. Furthermore,
- FIGURE A8-1
we have from (A6-9) and (A6-12):
AN N
4 =8 =0
Y .
= e, 1s12 (A8-2)

o>
l_,'nl
g

That is, the real and imaginary parts of 9 are independent,
Gaussian, of zero mean, and common variance, 2ENO; and an identiecal
statement applies to 9. Thus, using a result of Rice(lé), we may

write

2
q. q. .
pr [lqilJ = Iﬁl’% exp[- I g;o ] i=1,2 (A8-3)
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That is, the lengths of the vectors q and q2 in Figure A8-1 are
Rayleigh distributed. Now, we first assume that the path strength, a,
is known to the receiver. Then the vector 2aBed® in Figure AB-1 is of
fixed length,_ Again invoking a result of Rice for the length of the
sum of a vector of fixed length and a vector whose length is Rayleigh

(16)

distributed , we obtain

2, 2.0
: g g.| +ha E2 alg
pE [Igll/a] = 2’13135l oxp [‘ ’I"il'zﬁz'ﬁ‘" ] T ['lTl‘I‘] (AB-L)

(o) o 0

We may finally show, using (A6-12) and the assumption that

\ = 0, that

T B o ).

Since uncorrelated Gaussian variables are independent, we infer from
(A8-5) that q; and q,, and hence g, and g,, are independent. Then

we may write

P! (a)

Pr [lgal > 'gll/a]
| (0 0]

Soopr [l‘gl‘ /a] dlgll S pr Dgzl /a] d |g2| (A8-6)

|e,] |

Since, from (A8-1), g = Q,, We may write pr [|g2|/a] = Pr[l gzl =|q2|] .

Using (AB-B% the |g2| - integration of (A8-6) becomes exactly
g " .

exp l:- E!Eﬁl-] o Using this result with equation (A8-l) in the
)

remaining |g1 I—integration, we have



- 9% =

2 i . - - . - L
[ 5] e |
Pt(a) = 0 I I e 'gl‘z I 1| dI (AB-?)
e T2EN_ €11 &*p N g |
[o]
With the help of equation (A4-5) of Appendix IV, equation (A8-7)
reduces immediately to equation (4.30).

The marginal distribution, prta], of the path strength, obtained

by 1ntegrat1ng equation (2 .05 ) over 9, 15(16)
- 2,2 _ )
pr[a] = iz— exp [- 2 +g ] I, [(—I-%]' ' (A8-8)
o] 20 o - )

Substituting (4.30) and (AB-8) into (L.31), we have:

" ’_"1[__?_"1_1 g“’a o[- £

a |1 E )] [aa]
2 (L .20 1|2 |aa (A8-9)
2 2
202 2 (o} NO' °lLo
o
Again using (A4-5), and rememberlng that o= -a- and B = § ,

)
we may obtain equation (L.32) directly from equation (A8-9).
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