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COMMUNICATIONTHROUGHNOISY, RANDOM-MULTIPATH CHANNELS

by

GEORGE LEWIS TURIN

Submitted to the Department of Electrical Engineering on May 14, 1956
in partial fulfillment of the requirements for the degree of Doctor of
Science

ABSTRACT

Statistical methods are applied in this paper to the problem of com-
munication through a multipath channel which has random (or unknown)
path characteristics, and which has additive random noise present at
the receiver end. In an introductory chapter, the transmitter of a sys-
tem for use with such a channel is defined as one which encode s the ou.t-
put of an information source in.to a sequence of selections from a finite
set of me ssage waveforms, and transmits this sequence into the channel.
The receiver is specified as one which, on reception of the channel-
perturbed transmitted signal, computes a posteriori probabilities of the
possible transmitted message~waveform-sequences, and, on the basis of
these, supplies guesses at the information source output to an information
user.

The first problem with which the paper concerns itself is that of est-
ablishing an a priori statistical model of the channel. It is shown that
this a priori model is often in.adequate, and measurement techniques for
obtaining further (a posteriori) information about the channel are dis-
cussed. -

Next, the problem of determining the operational form of the receiver's
probability computer is investigated. Si.nce this form depends on the amount
of information about the channel which is available to the receiver, several
results are obtained, one for each of several assumpti.ons concerning the
state of the receiver's knowledge of the channel. Probabilities of error cor-
re sponding to two of the se probability-computer forms are evaluated for the
special case in which there are only two equi.-energy, equiprobable message
waveforms and only one path; and for which the receiver makes its guess,
for each message waveform in a sequence, by choosing the waveform which
is a poste riori most probable.

-The problem of generation of an optimal set of message waveforms is
then considered, in particular, for the spe,cial case described above. In
this case, the optimization condition consists in the adjustment of the cross-
correlation coefficient of the two message waveforms.

A commentary on possible future extensions of the present work concludes
the paper.

Thesis Supervisor: Dr. W. B. Davenport, Jr.
Title: Assistant Division Leader, Lincoln

Laboratory, M. I. T.
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CHAPTER I: INTRODUCTION

In recent years the problem of the design of systems for communication

through randomly-disturbed channels has been approached from a more funda-

mental point of view than was previously employed. It was recognized that

the essential feature of the problem is the statistical nature of the disturbance,

and that, hence, statistical methods must be used in system design. The

vanguard of this approach include d Wiene r (1), Shannon (2, 3), and Woodward

and Davies (4, 5), to name but a very few.

Attention has heretofore been focused almost exclusively on additively-

dis turbed channels, that is, channels in which the only random dis turbance is

one added to the transmitted signal. The more difficult problem of communi-

cation through channels which are not purely additively distur.bed has, on the

other hand, received relatively little attention. It is the purpose of. this paper

to consider, from a statistical point of view, the problem of communication

through one type of non-additively-disturbed channel: a random-multipath

channel, in which a signal may travel from transmitter to receiver by way of

many paths, which have randomly-distributed characteristics. The channel

will also be considered to be noisy, with the noise added at the receiver end.

Other statistical investigations relating to this type of channel have been made

by Price(6, 7, 8) and by Root and Pitcher(9). The present work, in fact, is

closely related to that of Price in some aspects. +

A. Model of System to be Considered.

The generic model of the communication system to be considered is shown

in Figure 1-1. Like Shannon's model (10), it consists of aninfor:mation source,

a transmitter, a channel, a receiver, and an information user. We shall take

+ See especially Chapter III, Sections A and B.
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the information source to be one which produces as its output a sequence

of symbols drawn from a finite alphabet; it may be, for example, a printed

English text. We define the function of the transmitter to be, first, the

encoding of the information source output into a sequence of message wave-

forms, which are drawn from a finite set of finite-duration message wave-

forms; and, second, the transmission of this message -waveform sequence

into the channel. The set of message waveforms may be, for example, a

set of pulsed sine -waves of different frequencies, as in frequency-shift

telegraphy. In the channel the transmitted message-waveform sequence,

or signal, is distorted, first by transmission through a random-multipath

medium, and then by the addition of random noise at the receiver input.

The received signal, then, generally does not provide the receiver with an

unequivocal indication of the transmitted message-waveform sequence.

The receiver must make do with an imperfect situation by guessing at the

transmitted sequence on the basis of some operation on the received signal.

This guess, or perhaps a set of guesses, is presented to the inforrration

user.

A closer analysis of the encoding function of the transmitter leads to

its division into two parts. The first of these, which is performed by the

encoder of Figure I-I, consists in the one-to-one translation of the infor-

.mation source output, which is a sequence of symbols drawn from an alphabet

of say Q letters, into a sequence of new symbols drawn from an alphabet of

say M letters. Possible purposes of this translation may be, for instance:

reduction of alphabet size; reduction of redundancy(ll), insertion of error-

detection or error -correction symbols. An example of the first purpose

is the teletype code, in which written text is translated into a two -symbol
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("mark" and "space") alphabet. The second purpose is illustrated by the

optimum code of Huffman (12). An example of the third is given in a paper

by Hamming(13). Generally~ the encoder may require a statistical know-

ledge of the information source (e. g. ~ letter frequencies, digram

frequencies, etc.), and this is indicated in Figure 1-1.

Up until now we have considered only abstract alphabets. That is~

the symbols of both the M- and Q..;alphabets are so far merely abstract

ink-marks, and as such are hardly eligible for transmission through the

channel. The second part of the encoding function.~ then, consists in the

generation of a set of M distinct physical waveforms to take the place-of

the abstract symbols of the M-alphabet. This is by no means a trivial

operation, for not any arbitrary set of waveforms will do; they must be

chosen to combat the perturbing effect of the channel effectively. For

example, a set of sine waves of the same frequency, but of different phases~

would be an absurd selection if the channel contains a random phase-

shifting device. Essentially, the second part of the encoding function of the

transmitter is concerned with the generation of a suitable "codebook" for

use by the encoder. This is done by the message-waveform generator,

which require sa s tatis tical knowledge of the channel, as shown in Figure 1-1.

From the redundancy point of view, the entire encoding operation con-

sists in the replacement of the natural redundancy of the information-source

sequence by redundancy of a kind more suitable for use with the given channel.

In this sense, the function of the transmitter is to "match" the information

.source to the channel.

The function of the receiver may also be divided into several parts.

The first of these is postulated to be the computation of the a posteriori

probabilities of the various possible message -waveform sequences. As is
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noted by Woodward and Davies (4), all of the information in the received

signal is implicit in these probabilities, so that this computation merely

reduces the available data (i. e., the received signal) to an alternate form;

there is no loss of information involved. In order to carry through the

computation, the probability computer must have available a statistical

knowledge of the source (i. e., the a priori probabilities of the .various

possible message-waveform sequences) and of the channel, and a copy of

the transmitter's Itcodebooklt of message waveforms.

The complete ~ posteriori distribution as available at the output of the

probability computer is not in itself useful to the information user; the user

requires a receiver output which is in the same form as the transmitter

input--for example, printed English text. Thus, the receiver is called upon

to guess at the transmitted message-waveform sequence on the basis of its

~ posteriori knowledge. This is done by the decision circuit, whose output

is hence a sequence of symbols from the abstract M-alphabet, or perhaps

a set of a few highly-probable sequences. This guessing operation of course

involves a loss of information.

Finally, the output of the decision circuit is translated back into a

sequence (or sequences) of Q-alphabet symbols by the decoder, which is the

exact inverse of the encoder. The decoder output is supplied to the infor-

mation user.

B. System Design Problems.

The above description of the functions of the transmitter and receiver

automatically brings to mind certain questions, which may be phrased as

follows:

1) How does one design the encoder (and hence the decoder)?
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of information about the channel which is available at the receiver. The

probability of error corresponding to two of these probability-computer forms

will be derived in Chapter IV for a simple special case. The question of

message-waveform generation will then be discussed in Chapter V for this

special case. Finally, Chapter VI will be devoted to a commentary on the

results obtained, and to suggestions for future investigations.

C. Notation.

1. Complex representation of physical waveforms.

In this paper we shall, for the most part, use the complex representa-

tion of physical waveforms which is described by Woodward. (14) The part of

this notation which is of immediate concern to us is that relating to the repre-

sentation of narrow-band-pass waveforms. This is essentially a generali-

zation of the familiar practice of representing A cos (2nft+<t»by A ej2nft, where

A is complex. More generally, a narrow-band-pass waveform is represented

as the product of a complex low-pass modulating waveform, x(t), and a

. .d 1 . +CISOI a carrIer:

.2nf tJ 0
~(t) = x(t) e (1. 01.)

fo is a suitably-defined carrier frequency- -for example, the centroid of the

energy- or power-density spectrum of the waveform. As in the cosinusoidal

case, the actual physical waveform is represented by the real part of ~(t):

"'''' ~~(t) = x(t) cos 2nf t - x(t) sin 2nf to 0 (1.02)

... Following Woodward, we shall use Greek letters for complex band-pass
waveforms and English letters for low-pass modulating waveforms.
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where we have used a circumflex (,,) to denote "real part of" and a tilde (N)

to denote "imaginary part of". Equation (1. 02) is, in fact, a representation

which has been in use for some time (15); (1. 01) is merely a more convenient

and compact way of writing it.

x(t) represents both an amplitude and phase modulation. Its magnitude,

I I /,,2 N 2
x(t) = V x (t) + x (t) =

is the amplitude, or envelope, and its angle,

4 -1 ~(t)x(t) = tan
"x(t)

the phase deviation, of the carrier.

(1.03a)

(1. 0 3b)

The cross -correlation function of two complex transient waveforms,
.2 ni t ,- .2 ni t .

£(t) = x(t)eJ 0 and ~(t) = y{t)eJ 0, is defined as the complex function

S * -j2nfTS *lJ1(T)= S (t) ~(t-T)dt = e 0 x (t) y(t-T) dt (1. 04)

where the asterisk denotes "complex conj;:..tgate". It is easily shown * that the

real part of lJ1(t) is twice the cross -correlation function of the actual physical
A "-

waveforms £(t) and 1(t). Similarly; the magnitude of lJl(t),

Il/J(T) I = I S x *(t) y(t-T) dt I (1.05)

may be shown to be twice the envelope of the physical c:::,oss-correlationfunction.$

$ See Appendix 1.
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We shall find it necessary to use the sampling theorem for band-limited

waveforms. In complex notation this takes the following form. (14) Suppose

Wthat S(t) contains no frequency components outside of the band fc - y< f

< fc +;-. (Ie > '-; ). Then S(t) is completely specified by complex samples

Sk == S(~) taken at intervals of .Jr seconds. Furthermore,

w 5 IWll2 dt =I l~kl2
k

2. Fourier transforms.

(1.06)

In this paper we shall use Fourier transforms in which the frequency-

domain variable is a cyclic, rather than a radian, frequency. That is, the

transform pair

00

x(tl = 5 X(flej2Tlft
elf

-00

00

5 - '211ft. X(f) = x(t)e J dt

-00

(1. 07a)

(1. 07b)

will be used, where x(t) is the time-domain function, and X(f) its frequency-

domain mate.

3. Probability and probability density.

We shall use the notation Pr[x] for "probability of x" and pr[x] for

"probability density of x", and shall reserve the letters P and p (usually with

subscripts) to denote particular probability (density) distributions.
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CHAPTER II: THE CHANNEL

We now turn our attention to answering the fifth question of the last

chapter, uIn what form is statistical knowledge of the channel available to the

receiver and transmitter?" We may partially answer this by stating, "In the

form of probability distributions of channel characteristics", but this is not

very satisfactory, for one is immediately led to ask, "What are the pertinent

characteristics, and what are their probability distributions?" This chapter

is devoted to answering the latter que stion.

Knowledge of the channel may be divided into two types: ~ priori and ~

posteriori. The former type may be based, on a physical model of the channel;

on the other hand, it may merely reflect ignorance of the channel, and thus be

better labelled ~ priori "misknowledge ". ~ A posteriori knowledge is based on

channel soundings, i. e., on measurements of channel characteristics. We

shall discuss the tV/O types of knowledge in the order mentioned.

A. A Priori Knowledge.

1. A model for the additive noise.

Let us first dispose of the question of a model for the additive noise at the

receiver end of the channel by assuming that the noise is statistically independe'nt

of the multipath medium, and is statistically stationary, Gaussian, and has a

flat power-density spectrum, at leas~ over a range of frequencies which covers

the transmis sian band. If vie are considering a radio communication system,

for example, such a model might carre spond to the thermal noise in the re-

ceiving antenna and receiver, and to the shot noise in the receiving tubes.

*' This will be discussed later in more detail; suffice it to say now that the
design of the receiver and transmitter depends not on what the channel actually
is , "but on what.the receiver and transmitter think it is. . i'
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We may, without loss of generality, assume that the noise power-density

spectrum is constant and equal to No (watts/c. p. s.) over a bandwidth WN,

which at least covers the transmission bandwidth W, and is zero elsewhere.+

Then from the sampling theorem of Section I.C.I, a noise waveform, V{t), is

completely specified by complex samples, -Vk, taken at intervals of I/WN
seconds. The real and imaginary parts of each sample are Gaussianly distri-

buted, and m~y be easily shown, using a result of Rice (15) , to be independent

and to have a common variance of WNNo. Furthermore, since the auto-corre-

lation fun.ction of the noise has zeros every 1/WN seconds, and uncorrelated

Gaus sian number s are independent, the sample s are independent of one another.

Then, a sample of noise T seconds long is specified by approximately+ t? TW N

independent complex samples, whose real and imaginary parts are Gaussian and

(2.01)=

The joint probability-density distribution of the se sample s is thus

TWN J
~l !Yk

12

independent.

Using equation (1. 06), we may write for the "probability-density" of a noise

v/aveform, v(t), of duration T:

(20 02)

*' Strictly speaking, the noise cannot be truly random (L e., unpredictable from
its past) under these conditions (cf. reference 1, Sec. 2.4). Practically speaking,
however, vie may ignore the inherent predictability, for it would be difficult, if
not i!l1poSsible, to utilize.

+ + We say "approximately", for a waveform cannot be simultaneously of finite
bandwidth and finite time duration. For T » 1/WN' the approximation is very good.
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Equation (2. 02) is sufficient, for our purposes, to. characterize the additive

noise. We assume that N is known.o

2. A model for the multipath medium.

We shall describe the multipath medium in terms of elementary "sub-

paths ", which we shall group together in a certain "way to form "paths" 0 A

sub-path is defined by a strength" bik, and a delay, tik, such that', if a signal,

S(t), is transmitted, the output of the sub-path is bik S(t-\k)' + (The subscript

ik, indicates that we are considering the kth sub-path of the ith path.) A path

is in turn defined as a group of sub-paths v/hose delays differ from one ano~her

by amounts much less than the reciprocal of the transmission bandwidth, W.
+'h

The contribution of the i ~... path to the multipath-medium output is the sum of

its sub-path contributions:

j2r:f (t-t.k)o 1e (2. 03)

where we have written, as in equation (10 Ol~, S(t) = x(t) ej21Tfoto Now, since

x(t) is a low-pass function vib:.ich does not vary appreciably over intervals much

1less than W ' we may, to a very good approximation, set x{t-tik) = x(t-Ti) for

all k. Then ~i (t) becomes

(2004a)

We shall call T. the modulation delay of the ith path. It is a vaguely-defined
1

quantity which, practically speaking, may be set equal to anyone of the tik's.

We shall assume that, generally, the terms of the summation of equation

+This implie s the as sumption that the multipath medium is linear and its
physical properties do not vary appreciably across the transmission band.
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(2. 04a) are of two types: those terms for which bik and tik are fixed quantities,

and those for which bikand \k are randomly time -varying quantitie s. Summing

over these two types separately, we may rewrite equation (2. 04a) in the form:

[ -J'o' -J'E'] J'2iTfot".(t) = X(t-T.) a.e' 1 + s.e 1 e-'1 1 ~ • .. 1 I

Ued ra~dom

(2.04b)

The fir st bracketed term in equa.tion (2. 04b) we shall call the fixed component

of the ith path, for a. and O. are fixed quantities. The second term we shall
1 1

call the random component; s. and E. are randomly time-varying quantities.
1 1

These terms may be represented vectorially

(see Figure 2-1): the resultant of the fixed

and random components is a vector of length

a. and phase e.. Correspondingly, equation
1. 1

(2. 04b) may be rewritten as
FIGURE 2-1

YJ i (t) (2.04c)

We shall call a. the strength, and e. the carrier phase-shift, 6fthe ith path.
1 1

We have thus reduced our description of the ith path to that of three char-

acteristics: a., e., and T .• + These are generally random functions of time, and
1 1 1

we may therefore describe the ith path in terms of probability-density distributions

of.the three characteristics. It will be seen later that, for the purposes of this

paper, it will be sufficient to know only the first-order joint distribution,

pr [ai' e i' Ti] ; we shall not require higher-order distributions.

'*'Weare justified in speaking of T. and e. separately, for, because of the manner'
1 1

of definition of T., we may consider variations in e. (i. e., in the t.k's) while con-
111

sidering T. to be fixed. This will prove to be a convenient technique.
1
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In establishing the expression for this first-order distribution, we first

write pr [a., a., T.] = pr [TJ pr [a., a./T]111 1: 113: We then as surne that for a

"fixed" Ti, the random sub-paths combine in such a w?-y that the strength, si'

of the ith random path-component is Rayleigh distributed with mean square

2CT~; and its phase-shift, Ei, is completely random (io eo, distributed evenly

over the interval (-'iT, 'iT» 0 * ~ow, Rice (16) gives an expre ssion for the joint

distribution of amplitude and' phase 0'£ the sum of a fixed vector and a vector

(2005)

elsewhereo

pr [a. , a.1 T.] =111

with Rayleigh-distributed amplitude and completely-random phase; using

thO 't *+1S we may wr1 e:
a.

1--:--z
21TCT •

1

The dependence of pr [a., a./T.] on T., if any, will be through the parameters1 1 1 1

a ., CT., 0.. We shall leave the question of an a priori distribution for T., pr [T.] ,1 1 1 1 1

until a later chapter 0

The multipath medium will generally contain many paths such as the one

described above, say L of them. The total output of the medium will then be

~(t)

L

= I ~i(t)
i= 1

L

= l
i= 1

(2006)

+This assumption implie s that the quadrature components of the random vector,
Si, are independent, Gaussian variables, with zero means and equal variances.
These conditions obtain in many physical situations (see page 16 for examples) in
which the number of sub -paths is great enough for the central limit theorem to
apply.

++The marginal distribution of the path strength, a. {see equation(A8-8)of Appendix
1

VIII)isRayleigh for(a./<T.)=O, and is essentially Gaussian of mean a.. and variance111
CT~ for (n.ICT. )-.00 (Cf. reference 16). For curve s of the marginal dis.tribution of a. as1 1 1 1
a function of n.1 CT., see reference 17.

1 1
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and the medium will be completely described, for our purposes, by the joint

I first-order distribution of the three sets of characteristics: (ai), (Si)' and

(T.). We shall assume that all paths are conditionally independent, so we may
1

write

L

= IT pr [a., S./T.]
III

i= 1

(2.07)

In order to complete the a priori description of the medium, we need the joint

distribution of the Ti's, pr [{Ti)J; again, \ve postpone consideration of this until

a later chapter.

One may perhaps obtain a greater insight into the above de scription of the

multipath medium by referring to Figure 2-2, in which the output of a three-

path medium is depicted on the assumption that a pulse is transmitted which has

unit height and a \vidth approximately equ.al to the reciprocal of the bandwidth.

The output of the multipath medium then consists of three pulses, also of width

tr ans mi tte d
pulse

T

FIGURE 2-2
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approximately equal to 4-, whose hei"ghts, modulation delays, and carrier

phases (relative to the carrier phase of the transmitted pulse) are aoJ ToJ
1 1

and S., respectively (i=L 2, 3). The carrier period has of course been
1

greatly exaggerated. We shall postpone discussion of the discreteness of

the output pulses until the next section (see the discussion following equation

(2.20».

We may establish the following' correspondences between the above des-

cription of the multi path medium and actual physical phenomena. The fixed

path-components may be attributed to reflections from fixed objects or from

stationary refracting layers. The random components may be attributed to

scattering from turbulent regions of a medium (18), reflections from groups

of randomly-moving reflector s (19), or diffraction from a randomly-moving

diffraction screen(20). Using these correspondences, our multipath model

may, in many cases, be applied to such situations as radio transmission via

the ionosphere (either below or above the MUF) or via tropospheric scattering;

or to sonic or super-sonic transmission through fluid media. Experimental

verifications of the validity of the probability-density distribution of equation

(2.05) in the ionospheric and tropospheric cases are reported in the literature(21,

22, 23)

So much for the model of the multi path medium. Its failing is quite evident,

for although we have established a conditional distribution for the path strengths

and phase-shifts, we see that this is dependent on the sets of parameters (n.),
, 1

(0-.), and (0.), and these are generally unknown a priori. The parameters may
1 1 -:.-_-

in fact, in an actual physical situation, vary slowly with time, thus making (2.05)

and(2.07) only quasi-stationary. It is also likely that the actual probability-density

distribution of the T. J s will be unknown a priori. Thus, the a priori phys,ical de s-
1 -.:......_-

cription of the multipath medium is generally incomplete, and we are reduced to
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one of the two alternatives: either we may accept our ignorance, and make

"educated guessesll at the unknowns, i. eo, assign rather arbitrary probability

distributions to them; or we may try to measure the characteristics, (a.), (8.),
1 1

and (T.), directly. + We shall consider the first alternative in a later chapter,
1

the latter in the next section.

B. A Posteriori Knowledge.

loA posteriori distribution of characteristic s of medium.

Let us consider a measurement system in which a sounding signal, S(t) =
x(t) ej2'ITfot,of bandwidth W, duration T, and energy E, is transmitted. The

received signal, t(t) = z(t) ej21Tfot, is the sum of the multipath medium output,

~(t), and a noise waveform," (t):

t(t) = ~(t) + 1l(t) (2.08)

We shall assume that T is small enough so that the multi path medium may be

considered fixed (i. e., (a.), (8.), (T.) constant) for the duration of the transmission.++
III

Because the measurement is made in the pre sence of noise, our ~ posteriori

knowledge will not be exact; all we can expect is an a posteriori distribution of the

characteristics of the medium, to be obtained by some operation on ~(t), assuming

that the receiver has an exact replica of S(t). We denote this distribution by

pr [(a.), (e.), (T.)/t, 5] .
111

Before deriving the expre ssion for this ~ posteriori distribution, let us write

down expressions for the auto-correlation function of S(t) and the cross-correlation

+The possibility of measuring just the parameters, (aiL ((Ii), and (oi), of (2.07) may
be eliminated, for these may, in general, vary with time and thus ,:cannotbe measured
once and for all. If we are going to the trouble of repetitive measu~ements, however,
we might just as well attempt to measure the characteristics, (ai)' (8i)' and (Ti), them-
selves.

++In the ionospheric case, for example, this limits us practically to T's of the order
of fractions of seconds or less.
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function of ;(t) and ~(t). In complex notation (cf. equation (1.04», the auto-

1 to ° +corre a lon 1S

cj>(T) = S ~* (t) ~(t-T)dt = e -j21TfoT S x*(t) X(t-T) dt

The cross -correlation is

S * -j21TfT S *1JJ (T) = ~ (t) ;(t-T) dt = e 0 z (t) X(t-T) dt

The second part of (Z. 10) may also be written as

-JOZ1TfoT
1JJ (T) = g(T) e

(Z. 09)

(Z. 10)

(Z. 11)

where g(T) is equal to the integral containing z and x, which is a complex low-

pass function.

As we have noted in Chapter I, the real part of a complex correlation

function is twice the correlation function of the physical waveforms, and the

magnitude, twice the envelope of the physical correlation function. Thus, in

(Z.ll), the real part

(Z.lZ)

A. '"represents twice the correlation function of ~(t) and ;(t); and' 1JJ (T)I = Ig(T) I, twice

the envelope of this correlation function.

We may write the ~ posteriori distribution of the characteristics of the medium

in the form

(Z.13)

+All integrals extend over regions of non-zero integrand.
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We shall first derive an expression for the second factor on the right. By

Bayes! equality,

pr [(a.), (8.)/(T.), S, s] =1 1 1

pr [( a .), (8.) / (T.)1 pr [s / (a .), (8.), (T.), s]1 1 l'J 1 1 1
pr [sf (Ti):~J (2. 14)

In this expression, pr [(a.), (8.)/(T.)] is an a prioridistribution. We shall
1 1 1 -~--

assume that it is of the form of (2.07), and leave the question of the values of

the parameters, (ai), (vi)' and (oi)' open for the moment. pr [s/(Ti), s] is just

a normalizing factor; it ensures that the integral of (2.14), taken over all values

of the a. fS and 8. fS, is unity.
1 1

The remaining factor, pr [s/(ai), (8
i
), (Ti),s] , vIe shall call the likelihood

function of So It is just the probability that, from (2.08),

(2. 15)

given ~(t) in the form of (2.06), with (ai), (Si)' and (Ti) known. Using (2.02) for

the probability of ,1(t) , and assuming that

(2. 16)

we easily obtain an expression for the likelihood function, which, when used with

(2. 07) and (2. 14),

L

TT
i= 1

pr [(a.), (S.)/(T.), S, s]=
1 1 1

~See Appendix II.

o elsewhere
(2.17)
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In this equation
I

= ~i2 {
Ig(T.) 1

2 +(1f
Z

2 a.
R e [g(Ti) e -jlii] }, 1 + 1a.

N
2 21

(T. N
0 1 0

= [~~
J -1,2 + 1CT.

1 --zv.
1

,..,
a: g(T.)
1 sin O. + 1---z 1 rr-

-1 (j'. 0
0' tan 1= ~(T. )a.

1 O. .1.
1-z cos I ~1

(J'. 0
1

(2.18a)

(2. 18b)

(2.18c)

Thus, the a posteriori conditional distribution of (a.) and (8.) is of the same form
- 1 1

as the a priori conditional distribution. (cL equations (2.05) and (2.07». The new

parameter sets, (a!), (u!), and (o!), depend only on the noise power-density, the
111

old param eter s, and sampled value s of the cros s -correlation function of the incoming

signal and the replica of the sounding signal stored in the receiver. Thus, the

factor R e [g(Ti) e -joi] of (2. 18a) will be recognized from (2.12) to be twice the cross-

correlation, sampled at modulation delay T., in carrier phase o.;~ similarly, g(T.)
! 1 1

and g(T.) of (2. 18c) are twice the correlation at T., in carrier phases 0 and ~, res-
1 1 G

pectively. 1 g(T.) 1 is twice the envelope of the cross-correlation, sampled at delay
1

T .•
1

Let us now return to the question of the a priori parameters, (a.), (u.), and (0.).
- 1 1 1

Because of the equivalence of the forms of (2. 07) and (2. 17), we see that the se para-

meters may indeed be the ~ posteriori parameters of a previous measurement. If,

however, there has been no previous measurement, we must do the be st we can by

choosing the parameters in such a way as to register our ~ priori ignorance. Now,

.We here again invoke the property of riarrow-band(cotrelatioil) functions, tnat we may
speal~ of modulation delay and carrier phase separately; that iS,we may speak of the
correlation at various phases for a given delay.
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roughly, we may think of the O".'s as measures of this ignorance --- the larger a
1

particular (T. is, the more uncertain is our a priori knowledge of the strength and
1 ------

phase-shift of that path; iT. = 00 indicates complete a priori ignorance. In this
1 --=---

latter case, we note from (2.18) that the a posteriori parameters are independent

of the a priori ones; (ai)' (vi)' and (oJ) depend then only on the measured cross-

correlation function.

The result of the measurement, we hope, will be to make a substantial in-

crease in our knowledge of the multi path medium. For this to be true, we must

have u!«cr .. From (2. 18b), this means that
1 1

2
2er. E

1

No
» 1 (2. 19)

That is, for a useful measurement, either our ~ priori knowledge must be small

(0". large), so that any a posteriori knowledge is helpful, or the signal-to-noise1 .::0... _

ratio, ~ ,must be large.
o

Suppose that (2.19) is satisfied, i.e., the measurement is a useful one. Then

assumption (2. 16) becomes

(2. 20)

The left-hand side of this in.equality is the envelope of the normalized auto-correlation

fun.ction of the sounding signal. Now, this signal has bandwidth W, and we know that

the auto-correlation function of a signal of bandwidth W is small for values of argu-

1ment greater than the order of w. Thus, (2.20) will be satisfied if

(2.21)

We conclude, then, that if the measurement is u.seful at all (Leo, (2.19) holds), the

distribution (2. 17) is valid only if the multipath medium is made up of paths whose
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1modulation delays differ by amounts greater than the order of W' This is not

too much of a restriction on the generality of (2.17), however, for we have al-

ready seen that, for all practical purposes, a group of paths (sub-paths) whose

delays differ by amounts less than the order of ~ can be considered ~ priori

as one path by vectorially adding their strengths. We can thus reduce the number

of paths under consideration in such a way that (2. 21) is automatically satisfied,

at least to a good approximation.

We may also interpret (2.20) from the point of view of resolvability of paths.
-

Let us first write down the expression for the a posteriori probability distribution

of the T.rS, which can be derived in a manner similar to the derivation of (2.17). +
1

(2. 22)

C is a normalizing constant which ensures that the integral of (2.22), over all

configurations of the T.' S, is unity. pr [(To)] is an a priori distribution of the To'S.
1 1 - 1

We see that the only operation upon which the a posteriori distribution of the

To'S is based is again the cross-correlation function of the received signal with the
1

stored replica of the sounding signal. In. particular, for the case (j'.~OO, all i, we
1

require only the envelope of this cross -correlation (cf. equation (2. 18a)). Now,

for a reasonably high signal-to-noise ratio, E/N (which is required for a goodo
measurement), the cross-correlation function

will be essentially the auto-correlation function.

of the sounding signal, added to itself several

times with different delays, once for each path

(cf. equations (2.06), (2.08), (2.09), and (2.10)).

If (2. 20) is satisfied, then the contribution to the

*See Appendix II.

f Ig(T) I

I~~T
FIGURE 2-3
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cross -correlation due to anyone path will be essentially nil at the peak of the

contribution due to another path, so that the envelope of the cross-correlation

will consist of L distinct pulses, as in Figure 2-3. On the other hand, if (2.20),

and hence (2. 21), doe s not hold for a pair of paths, the corre sponding pair of

pulses in Figure 2-3 would merge, i. e., be unresolvable by the Ineasuring equip-

mente But the two paths may also be considered as sub-paths of a composite path

(at least to a good approximation), so that our method of grouping sub-paths is

equivalent to saying that we need only consider as distinct those paths which can

be resolved by the receiver.

Now consider the case for which we have no a priori knowledge of the multipath

medium, not even of the number of paths which exist. By the above reasoning, we

can find an effective path number by counting the nUIllber of resolved pulses in

Ig(T) I. We may then use (2. 17) and (2.22) to obtain an a posteriori distribution

of the characteristics of these effective paths, for condition (2.21) will automati-

cally be satisfied.

This reasoning of course breaks down if extended too far. We have assumed

that we can group sub -paths in a reasonable manner, so that Figure 2 -3 is an

accurate representation, i.e., is composed of discrete pulses of width very close

1
to W. If there is a continuum of sub-paths, however, we should be able neither

to- group sub-paths in a reasonable way a priori, nor to resolve any discrete pulses

in Ig(T) I. We shall henceforth assume that the possibility of a continuum of paths

does not exist; we shall restrict ourselves to the discrete - path case.

As a final point related to (2.20) and (2.21), we consider the power-trans-

mission spectrum of the Illultipath medium. If there are more than one path, and

(2.21) holds, the paths will interfere constructively at some frequencies in the band

and destructively at others, as in Figure 2-4; that is, the medium will be frequency
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selective. On the other hand, the interference

uency selective; it is for this reason that we are

path by the frequency-independent parameters,

able to group sub-paths and represent the resultant

.. fo ..
1(j i'

of the component sub -paths of a path is not freq-

FIGURE 2-4

We have noticed that the only operation which is required to obtain an a

posteriori distribution of the multipath characteristics is the cross-correlation

of the received signal with the stored replica of the sounding signal. Now, as

is well known, (5) this operation can be performed with a linear filter which is

"matched,,(25) to the sounding signal; that is, one whose impulse response is the

same as the sounding signal, but reversed in time. This is easily seen by writing

the convolution integral, giving the output of a linear filter in terms of its input
..L.

and its unit-impulse re sponse function. In complex notation, this is-r

1 '" *(3(t) = Z J S (T) IJ. (t-T) dT (2. 23)

where (3is the output; S, the in.put; and tJ., the impulse-response function. If we

let ~t) = ;(-t) and ~(t) = i lJ;(t), (2.23) becomes formally identical with (2.10). tJ.(t)

may be made physically realizable (;( -t) is not) by allowing a time delay of T seconds,

that is, setting tJ.(t)= ;(T-t). The times at which the filter output is sampled must

be correspondingly delayed. For large ~ , the envelope of the matched-filter out-
o

put will look like Figure 2- 3 (four -path case), where T is now the time variable.

2. Minimum-mean-square-error estimation of impulse response of medium.

Instead of obtaining the complete ~ posteriori distribution of the characteristics

of the medium, we might only be intere sted in obtaining some definite estimate of

*For an explanation of the factor of 1/2, cf. Appendix 1.
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the characteristics. One type of estimation would be to find those values of the

a.'s, 8,.'s, and T.'S which maximize (2.17) and (2.22); that is, we may choose
111

the a posteriori most probable characteristics. We shall describe in this section

another type of estimation of which we shall call minimum-mean-square-error

estimation.

Let us think of the medium as a randomly time -varying linear filter; and

let us try to e stlmate its impulse re sponse by some linear operation on the re-

ceived signal, when we have transmitted a sounding signal, x(t) + , of duration T.

We again assume that the medium, and hence its impulse response, stays fixed

for the duration of the transmission.

The measurement system may be depicted as in Figure 2-5, where vie have

indicated the sounding signal as tm output of a linear filter with impulse re sponse

X(T), when a unit impulse, 6(t), is applied to its input. We require the impulse

response, h (T), of the linear estimating filter which makes a minimum-mean.-e

6 (t) X(T)

X(f)

h (T)
m

H (f)m

FIGURE 2-5

n(t)

y(t) h (T)e

H (f)e

g(t)

square -error estimate of the impulse response of the medium, h (T); this
m

estimate is made in the presence of additive noise, n(t).

Suppose that we know that the impulse response of the medium lies essentia;lly

inside of some interval, say 0 ~ T{ 6. Then the expression for the mean-square

.We abandon here the complex notation, for the results in this section may be
applied more generally than to just narrow-band-pass situation.
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error of the output of the estimating filter may be defined as

(2. 24)

where g(t) is the estimating filte r outP'l:lt, and EN, M denote s a statistical average

over the ensembles of possible noises and possible impulse responses of the

medium. We minimize this error by varying the estimating-filter impulse-response;

that is, we set

OE = 0 (2.25)

where the variation is with re spect to the estimating-filter impulse -re sponse.

It is shown in Appendix III that the transfer function of the estimating filter

(i. e., the Fourier transform of h (f» which satisfies (2.25) ise

1H (f) =e Aopt N(f)
(2.26)

where the asterisk denotes "complex conjugate II. In this expre ssion, X(f) is the

sounding-signal voltage-density spe ctrum;f}fm (f) f 2, the average power -transmission

function of the medium; and N(f), the noise power-density spectrum." Thus, the

only statistic of the medium which one must have a priori is 1 H (f) 12; if we have
- m

no. ~ priori knowledge of the medium, we set this equal to a constant.

The filter of (2.26) may not be physically realizable, because the condition that

the impulse response of a realizable filter must be zero for negative arguments was

not used in the derivation. However, this is not a great problem; we can usually

accept some delay in obtaining our estimate of h (T), and H (f) can usually be
m eopt

+In the interest of generality, we shall temporarily neglect our white -noise assump-
tion; we shall assume, however, that N(f) is known to the receiver.
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made realizable, at least to a ve ry good approximation, by introducing sufficient

delay. This delay will usually not be more than the order of T seconds.

For the no-noise case, i.e., N(f) =. 0, the solution reduces to the inverse

filter

1
He (f) = X(f)

opt

This is, of course, to be expected, for the voltage-density spectrum at the channel

output is H (f) X(f), and the filter of (2.27) restores this to just H (f), which ism m

Fourier transform of h (T). Thus, in the no-noise case, h (T) is estimated with-
m m

out error.

For N(f) 1= 0, comparison of (2.26) and (2.27) shows that the optimum filter may

be expressed (see Figure 2-6) as the cascade of the inverse filter of (2.27) and a

filter with transfer function

H (f) =c (2. 28)

where vie have set

N (f) =r
N(f)

IH (f) 12m

(N (f) is thus the noise power -density spectrum, referred back to the transrnitterr

through the average medium.) The output of the inverse filter in Figure 2-6 con-

tains h (T), but it also contains a large amount of noise, especially at those freq-m

uencie s where X(f) is small. The second filter attenuate s the noise, but in doing.

so, smears nm(T). The optimization procedure may be thought of as one which



- 28 -

-,
I I H_C(_£) 1--1-

----------J

r-- ---- ----

i I ~

1_-
other phase (except a linear one, which

make s the be st compromise between

eliminating noise and keeping h (T)
m

undistorted. H (f) is a zero-phasec
filter, as one would expect, for any

is a trivial exception) would distort the

de sired output, h (T), without helping tom

H (f)eopt

attenuate the effect of the noise, which FIGURE 2-6

has random phase anyway.

If 6. is of the order of magnitude of T, then the second term in the denominator

of (2.26) is roughly the transmitted power-density spectrum. If this is small, for

all f, compared to N (f) (or, equivalently, if the average received-signal power-r

density spectrum is small compared to N(f)), then (2.26) becomes

H (f)
e opt

*= 1 X (f)
6. Nr(f) (2. 29)

If N (f) is constant with frequency, which will occur, for example, if the noise isr

white and we have no a priori knowledge of the medium, then the filter of (2.29) is

matched(25) to the sounding signal; for taking the conjugate of a frequency spectrum

implie s reve rsing the time function.

So far we have considered X(f) to be arbitrary. Now let us, while keeping

H (f) = H (f) , solve for the X(f) which minimize s E, subject to the constrainte eopt .

that the energy in x(t) be fixed and that X(f) lie within a given band. That is, let

us set
00

S IXlf) /2 df = K
-00

(2. 30)
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and

X(f) = 0 for f not in F 1 (2.31)

where F 1 is the permitted band of frequencie s, and solve the equation

o (E + ~K) = 0m (2. 32)

where A is some constant. (26) E is the minimum mean-square error for an arbi-m .

tra:ry X(f).

The solution to (2.32) is shown in Appendix III to be

X(f) = e -j13(f)

o

fin F 2

fin FZ

(2.33)

In this equatlon, 13(f)is an arbitrary phase function, F 2 is the set of all freq-

uencie s in F 1 for which

_1_ ~ IN(f) l:!.

():: ~ 1 H (f) 12m

and. FZ is the set of all frequencie s not in F 2' The constant, A., is adjusted to

sa~isfy the energy ,constaint, (2.30). The intjrpretation of (2.33) confirms onel s

in tui tive notion s . The fir s t factor. [ N(f) D.] 4, indicate s that if the noi se powe r at

some frequency, f1, is very small, then little signal energy is needed at that freq-

uency to determine Hm(f1). On the other hand, the second factor indicates that if

the noise power at f1 is very large, or the average power transmission of the medium

is very small, then it is a waste of the limited available energy to put much, if any,

energy at f1; the energy may be used to more advantage elsev/here.

If we place (2.33) in (2.26), we obtain the optimum estimating-filter transfer-
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function corre sponding to the optimum X(f):

He (f) = ~ e+j(3(f)
opt

1

N(f) 6 ] Z
/Hm(f) /2

fin FZ

(2. 34)

We have assumed here that N(f) is non-zero at all frequencies. The optimum

filter of (2.34), as we should expect, has large gain at frequencies with -small

noise, and small, or zero, gain at frequencies with large noise.

The mean-square error corresponding to (2.33) and (2.34) is, froIn Appendix

III:

(2.35)

The first term in this expression is the contribution to the error of the noise and

smear components of the estimate which arise within the passband of H (f). The
eopt

second is the smear contribution arising from the complete lack of an estimate of

H (f) in the stopband of H (f) .
met op

We are actually usually interested in estimating H (f) only within the trana.-
m

mission band, F l' instead of for all f as we have done, for F 1 is the band we shall

use for communication. That is, we are intere sted in estimating the instantaneous

impulse response of an equivalent medium which has zero transmission outside of

Fl. This impose s no additional problem, however; it is easy to see that the re sult

of (2. 34) is optimum in this case also, since it is independent of value s of H (f)m

outside of the transmission band. The error of (2.35) also obtains in this case,
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except that the second integral is now taken over only those frequencie s in

FZ which are within the transmission band (i. e., the intersection of F 1 and F2).
If the noise is white, i.e., N(f) is constant, at least over the transmission

band, we see that the optimum estimator of (2034) is proportional to the complex

conjugate of the sounding-signal spectrum of (2.33)0 That is, the optimum esti-

mator is matched to the sounding signal. Thus, we use the same device in making

a minimum-mean-square-error estimation as in measuring the ~ posteriori pro-

bability distribution of channel characteristics (cL preceding section). It seems

reasonable to assume that, this being the case, the spectrum of (2. 33) will also
a!

1give the least equivocal ~ posteriori distribution, that is, the largest ratio ~
cr.

1

in (2. 18).
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CHAPTER III: THE PROBABILITY COMPUTER.

We shall in this chapter derive expressions for the operational form of

the probability computer. Let us first restate the problem. The transmitter

transmits a sequence of message waveforms chosen independently, with
.2rl t

probabilities, P , from a set of M message waveforms, £ (t) = x (t)eJ 0m , m m

(m = 1,2, ... 1 M); these waveforms and probabilities are known to the

receiver. The receiver receives a signal, s(t) = z(t)ej2nfot, which is the sum

of a noise waveform, Y (t), and tIe output, ~ (t), 'of the multipath medium. The

probability computer is asked, on the basis of its knowledge of the channel and

of the ~ priori waveform probabiliti(:)0 J Pm" to operate on s(t) in such a way as to

obtain ~ posteriori probabilities of the various possible transmitted sequences.

The analysis becomes particularly straightforward if we make two

simplifying restrictions; the effect of these is to allow us to describe the

multipath medium completely in terms of the first-order joint distributions of

(a.), (8.), and (T.) given in the last chapter, with no higher-order distributions.
1 1 1

required.

First, we shall require, as we did of the sounding signal of the last chapter

that the message-waveform durations be small enough so that we may consider

that the multipath medium remains essentially fixed during the transmission

of a message waveform. In the case of an ionospheric medium, for example,

this requirement limits the waveforms to durations of the order of fractions

of seconds or less.

Second, we shall restrict the receiver to per-waveform operation. That is,

we shall require that the receiver consider each waveform in the received

+ 1.e., joint dis tributions of the values of the variables (a.), (8.), and (T.) at
many different times. 1 1 1
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sequence as an event which is independent of each other waveform. This

independence does not in fact exist, for although we have assumed that the

waveforms of the transmitted sequence are independent of one another, it is

clear that the perturbed waveforms of the received sequence are not. This

follows from the fact that the characteristics of the multipath medium have

been assumed to change only very slowly fr~m waveform to waveform of a

sequence, and hence, the multipath-caused perturbations of successive

message waveforms are not independent ....

The assumption of per-waveform operation implies two other assump-

tions: that all message waveforms have the same duration (say, T)~so that the

starting time of each member of the sequence does not .depend on the past

history of the sequence; and that either enough time is allowed between the

transmission of successive message waveforms of a sequence so that the

waveforms do not overlap at the output of the multipath medium because of

the spread of path delays, or that any overlapping is small enough to be

neglected (i. e., the spread of delays of the medium is small compared to

the duration of a message waveform).

Using Bayes' equality, we may write for the per-waveform a posteriori

probability of the m th waveform:
./

~ The overlooking of the inter-waveform dependences which is entailed in
per-waveform operation results in a loss of information. One may, by the
following argument, gain an insight into the way in which consideration of
these dependences could lead to additional information about the trans-
mitted message. It is evident that we may use the message waveforms as
channel-sounding signals as well as information-bearing 'Signals; that is,
on the hypothesis, say, that Sm(t) was sent, we may compute an a post-
eriori distribution of channel characteristics just as discussed in-Chapter II.
Now, since these characteristics are assumed to vary very slowly, we
should, for example, consider a sequence of message waveforms which all
give similar distributions of characteristics more probable than a sequence
for which successively-obtained distributions are vastly dissimilar.
Per-waveform operation does not utilize such information.
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(3. 01)

Now, the ~ priori probabilities, Pm' are known, and pr [s] is just a nor-

malizing factor independent of m, so the problem of computing Pr [Sm/S]

reduces to an evaluation of the "likelihoods", i\. = prrs/s }.A is just them L m m

probability that the noise waveform, V (t), is

(3.02)

where 1(lll) (t) is given by (2. 06), on the hypothesis x(t) = xlll (t). Using the

assumption that the mtiltipath medj.u;m stays essentially fixed for the duration

of a message waveform, this probability may be written as:

We shall devote the rest of this chapter to the evaluation of (3.03).

For reference, we write down the complex cross -correlation function of

the received signal and the mth message waveform:

S * -j2nf T
~ (T) = S (t) S (t-T) dt = g (T) e 0m m m

where

g (T) == Sz*(t) X (t-T) dtm m

(3.04)

(3.05)
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Let us first assume either that the modulation delays, (T.), are known
1

a priori, or that their a posteriori distribution, (2.22), indicates that they are

1contained, with high probability, in intervals which are small compared to W'

Then the (T.)-integrations of (3.03) are unnecessary. We also assume that the
1

parameters of pr[(a.), (8.)/(T.)] are known a priori (equations (2.05) and (2.07)),
1 1 1 -~--

or have been evaluated by measurement (equations (2.17) and (2.18)). We shall

use the unprimed a priori parameters for convenience.

Then, assuming the noise -waveform distribution of (2.02), and further that

the resolvability condition +

all i f k (3.06)

holds for all m, where ep (T) is the complex auto-correlation function of them

m th message waveform, it can be shown +~ that the 2L-fold integration on the

a.'s and 8.'s in (3.03) reduces to
IIi

(J"i 2 ~ _'O~ 2

Am =. CTT
'L NIg . I + 2a. Re g , . e J 1 - 2a. E

1 0 ml 1 ml 1 m
----.,.- .....-- exp

. l'= 1 .2(J"~E [ 2(f~E ]
1 + No m 2No 1 + ~ m

+~ 0 thIn this equation, C is a constant, Ern is the energy of the m message

waveform, No is the (white) noise power-density, and we have written

g . = g (T.).ml m 1

See the discussion following equation (2.20) for an explanation of the
meaning of this condition.

+c> See Appendix IV.

(3.07)
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We thus see that the only operations performed by the probability

computer on the received signal consis"t in 1) the cross-correlation of this

signal with the Minessage waveforms; 2) the sampling of these correlations

at delays T., in carrier phases 0. (cf. equation (3.04)); and 3) the sampling
1 1

+As we have noted before,

the correlation operation may be performed by matched filters. Thus, the

probability computer contains a set of M matched filters, one matched to

each message waveform, and also a sampling device to sample the outputs

and the output envelopes of these filters. +$

Let us now consider (3.07) for the case where either we know a priori

that the medium contains no random path components, or the receiver has

exact ~ posteriori knowledge of the medium. Then <T. = 0, all i, and
1

(3.08)

We notice that the samples of the envelope of the cross -correlation function

have disappeared, and that only the samples of the cross -correlation itself,

r -jog~f>J a e 1, remain,
l~Hl1 This, of course, makes sense, for envelope sampling

is of use only whpn there is phase uncertainty, and herewe know the path

phase -shifts exactly,

Now .. the multipath-rrlediurc output in the case <T. = 0, all i, is
1

()IL
j(2rrfot-oi)n m (t) = a.x (t-T.) e (3.09)

11m 1
i= 1

~ See page 24,

•• An early interpretation of a correlation receiver in terms of a set of
matched filters was made by Fano(27).
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We therefore see, using (3.04) and (3.05), that the first term of the exponent

of (3. 08) is jus t the real part of the complex correlation

(3.10)

That is, we may think of the likelihood computer of (3.08) as one which operates

on the basis of the cross -correlation between the received signal and the set of

known signals, ~(m) (t) (m = 1, 2, ... ,MJ, which may appear at the output of

the medium. This is just the correlation receiver of Woodward and Davies (5),

as may be expected; for from the receiver's point of view the (non-random)

medium may be considered part of the transmitter, and the channel then is

perturbed just by additive noise.

In the other extreme, when we know ~ priori that the medium has no fixed

path-components, and we make no channel measurements, we have a. = 0, all i.
1

Then

i=1

1

2<r~
1 + 1 m

No

[

<r~lg .1
2

]1 ml

exp -2N-~-[-I-+-2-lTN....,.t-:-m-~
(3. 11)

We notice here that only samples of the correlation function env010pe appear.

This is intuitively justified, for if we were required to sample the correlation

function itself, we should have to do this at a given set of carrier phases. But

we are completely ignorant of the path phase -shifts in this case; i.e., we have

no reason to prefer one set of carrier phases over another. (3. 11), with a

much different notation, has also been obtained by Price. (8a)

The behavior of (3.07) for large noise is of interest: as N ~oo, it convergeso
to the fixed-multipath computer of (3.08). Essentially, this implies that, in
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the limit, the information which is transferred through the channel is conveyed

exclusively by the fixed path-components. This makes sense, for it stands to:

reason that the capacity of that part of the channel which is disturbed by path

fluctuations as well as by noise should vanish more rapidly with increasing

noise than the capacity of the part which is distrubed by noise only. In fact,

Price has explicitly. shown this for a' special case. (6)

B. (Tj) Known: (oi) Unknown.

We have thus far assumed that the parameters (oi) are known. This_ may'

very well be the case if they are a posteriori parameters. But on an a priori

basis, although we may know the strength parameters, (a.) and (<T.), of the
1 1

various paths, it is unlikely that we know the phase -shift parameters, (0.).
. 1

Let us, in fact, assume that the o.'s are a priori completely random from the
1 -~--

receiver's viewpoint (1. e., distributed evenly over the interval (-1T, IT)), and

independent.

likelihoods

Then, averaging A of (3.07) over the 0.' s, we obtain ~ for them 1

where we have written

2

[

<Ti / ~ /2 2 2E ]l'r gmi - ai m a. Ig . I
o I 1 ml

exp 2N (1 + ~ . ) O[N (l + ~ .)J
o ml 0 ml

(3. 12)

~mi =
22<T.E
1 m

No
(3.13)

I is the zeroth-order modified Bessel function of the first kind.o

Equation (3.12) depends just on the envelope of the cross-correlation

thfunction of the received signal and the m stored message waveform; as in

* See Append'ix IV.
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the case of equation (3. 11), this is due to the receiver's complete lack of

knowledge of the multipath-medium phase -shifts. The mes sage waveforms

may now be stored with arbitrary phase, since phase shifts of the correla-

tion function will of course not affect its envelope.

One might be tempted to argue that, conversely, equation (3.12) applies

to any receiver in which the message waveforms are stored with arbitrary

phase. This is not true,. for although a random phase shift of the m th stored

message-waveform transforms g . of equation (3.07) into g .e -jlJ.m, where
ml ml

f.1. is random, f.1. is independent of i; that is, instead of having to averagem m

equation (3.07) over L independent random variables, as in the derivation

of equation (3.12), we must in this case average over just one random variable.

Writing equation (3.07) as the exponential of a sum, and assuming that IJ. is

evenly distributed over the interval (-1T, 1T), we may easily evaluate this

$
average:

(3. 14)

In equation (3. 14), the argument of the I factor contains the L correlationo

samples, which have first been summed coherently (i. e., in the proper phase

relationships) before envelope detection. Equation (3.14), in fact, also applies

to the case where the 0.' s are not known exactly, but their differences are.
1

In this case, the e -joi of equation (3.07) is transformed into e -joi e -jf.1.,where

f.1.is again random, and independent of i; this is clearly equivalent to the case

we have just considered.

+ See Appendix IV.
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C. (Tj) Unknown.

Let us finally consider the possibility that the receiver does not have

exact knowledge of the modulation delays, (T.), as we have assumed up until
1

now, or that, in the hope of equipment simplification, we choose not to use

this knowledge. Then, from the receiver's point of view, the T.'S are random
1

variables with some distribution, pr UTi)]' In this case, we generally will not

have, or will choose to ignore, any knowledge of the o.'s, so that we may
1

obtain a new expression for the likeli;hoods by averaging equation (3. 12) over

F .(x)m1

the T.' S.
1

Let us first set
2

t
~i 2 2 2E ]-x - a.

1 No 1 m

= 1+~mi exp 2N (1+~ .) 10
o m1

(3. 15)

Then, using (3.15) in (3. 12), and averaging over the T.' S,
1

we obtain immediately:

LA: = cr ..5 pr [(Tiij TT F =Jlg= (Ti)IJdT 1... dT L
L times i= 1

(3.16)

where the integrations extend over all possible values of the T.' S.
1

Strictly speaking, pr[(Till cannot be an arbitrary distribution because of

the restriction imposed by the resolvability condition, (3.06), upon which

equation (3.16) is based. Let us at this point, however, neglect the resolva-

bility condition, and assume that the paths are independent, i.e., that

L

pr[(T~)J = IT pr hl; and further that

i= 1

1
B-A

o

A < T. < B
- 1-

elsewhere

all i (3.17)
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If the number of paths is small, and/or the interval (A, B) large, the total

probability of the cases in which (3. 17) contradicts the resolvability condition

will be small. In such a case, we may expect that the contradiction between

(3.06) and (3.17) will have little effect on the validity of subsequent derivations.

Let us further assume that a.=a and <T.=<T for all i, so that
1 1

F .(x} = F (x)m: m all i (3. 18)

Equations (3.17) and (3.18), taken together, imply that, from the receiver's

point of view, all paths are statistically identical. That is, as far as the

receiver knows a priori, all paths have the same strength distribution, and

all configurations of path delays in the interval (A, B) are equally probable.

Using equations (3.17) and (3.18) in (3.16), it follows that

(3. 19)

In many cases we require only the order, rather than the values, of the

~ posteriori probabilities of equation (3.01). If all of the ~ priori probabilities,

P ,are equal, this reduces to requiring the order of the likelihoods; that is,m
Alii Alii

we ask whether, say, 1\. is greater than or less than 1~. Since the term inp q

brackets in equation (3. 19) is positive, we may then equally well ask whether or

not

B B
S Fp[lgp(T) I] dT > S Fq[lgq(T) I] dT
A A

(3. 20)

It is important to note that in order to answer this question, the receiver does

not need to know how many paths there are.
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A receiver which works on the basis of -the operations of (3. 20) is much .,

more ignorant of the state of the multipath medium than ones which ~operate on

the basis of (3.07), (3.12), or (3.14),. and,weshould expect a correspondingly

inferior performance . On the other hand",.the operations of (3.20) may be

implemented much more easily than those of (3.07), (3.12), and (3.14), since

no sampling equipment is required in the former. In fact, the "probability

computer" of (3. 20) consists simply of M units like that in Figure 3-1. if! In

this figure, we have indicated a matched filter as the correlation operator.

The output of this filter, the cross -correlation function of the received signal

and the mth message waveform as a function of time, is envelope detected,

giving i Igm (t-) I. This in turn is fed :into a nonlinear device with transfer.

characteristic F (x). In general, F (x) maybe time-varying,' for a and (Tm m

may be functions of T; that is, the receiver may know ~ priori that, say,

paths at one end of the interval (A, B) will be stronger, on the average, than

paths at the other end. Practically speaking, however, we may wish to ignore

this information, so that we may make F (x) non-time-varying. The output ofm
the nonlinear device is passed through an integrator, which completes the

operations required by (3. 20).

Figure 3-2 shows a typical nonlinear transfer characteristic, F (x). It
m

increases slowly for small values .of x, and very rapidly for large values of x.

The effect of such a nonlinear operation on the cross -correlation function

envelope is greatly to accentuate the peaks of this envelope. That is, it

weights heavily those parts of the cross -correlation envelope which are most

probably due to the presence of a signal, while it suppresses, relatively, those

+ The possibility of a solution in the general form of Figure 3-1 was originally
suggested to the author by R. M. Fano.
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parts which most probably originate from noise. Essentially, the nonlinear

operator expresses the fact that the receiver grows rapidly more sure that

a cross-correlation envelope peak is significant, the greater is the magnitude

of that peak. The same sort of reasoning may be applied to the results in

Sections A and B of this chapter; in these results, however, nonlinear

operations are applied to sampled values of the cross -correlation functions and

their envelopes) rather than to the complete functions.
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CHAPTERIV: PROBABILITY OF ERROR: SPECIAL CASE

Let us assume that the receiv:er makes a guess at which message wave-

form was transmitted by choosing the one with the greatest a posteriori

probability. Under this assumption, we shall evaluate the probabilities of

error of the receivers 'containing the likelihood computers of equations

(3. 07) and (3. lZ). We shall do this for what is es sentially the simples t non-

trivial case, in which there are only two message waveforms (M=Z) of equal

energy(E 1=EZ=E) and equal ~ priori probability (P 1=P z=i) , and only a single

path (L=l). The methods we shall use can be extended to more general cases,

at least for the system containing the computer of equation (3.07), but only

at the expense of rapidly increasing complexity and difficulty of computation.

For the case under consideration, because the a priori probabilities

are equal, we see from equation (3.01) that the receiver may make its guess

by choosing the message waveform corresponding to the greatest likelihood.

Thus, we may write the total probability of error as

(4.01)

where the first term is evaluated on the hypothesis that S1(t) was transm.itted,

and the second, on the hypothesis that SZ(t) was transmitted. It is easily

seen from considering the symmetry of our special case that these two terms

are equal, so that we may write:

(4.0Z)
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That is, we shall evaluate the probability that A 2 > Al on the hypothesis

that S 1(t) was transmitted.

In evaluating equation (4.02), we shall assume that the receiver has only

~ priori knowledge of the channel, and that this knowledge is correc t. That is,

we shall assume that the parameters, a., cr, and N , of equations (3.07) ando

(3.12), and 0 of (3.07), are in fact equal' to the corresponding parameters of

the channel. •

A. T Known: 0 Known.

We shall first evaluate P for the receiver which has phase information,e

equation (3.07). We may assume, without loss of generality, that 0=0. Then,

from (3.07), A 2 >Al if

where we have, of course, dropped the path index, i. Noting that

1 1
2 ",2 ",2 d' '1 1 f 1 12 d ,.g 1 = g 1 + g l' an s1m1 ar y or g2 ' an wr1hng

(4.04)

we may rewrite (4.03) as

$ Cf. footnote, page 1O..
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(4. 05)

We shall call D the decision variable.

Now, from equation (3.05) we may write

(4.06)

where we have set T=O for convenience. By hypothesis, the modulation

waveform of the transmitted signal is xl (t), so, from equations (2.06) and

(2.08), we have for the modulation waveform of the received signal:

.S
z(t) = axl (t)e -J + n(t) (4.07)

where n(t) is too modulation waveform of the additive noise. Now, a and S

share a joint distribution as in equation (2.05); hence, the real and imaginary

parts of the first term in (4.07) are Gaussianly distributed. (16) The real and

imaginary parts of n(t) ar~ also Gaussianly distributed. (15) Hence, the two

parts of z(t) are Gaussianly distributed. It follows that the real and imaginary

parts of gland g2' and hence wI' w2' w3' and w4' share a joint Gaussian

distribution. (28) Thus, the decision variable is a quadratic form of dependent

Gaussian variables.

It is easily shown + that the characteristic function of a quadratic form of

Gaussian variables is given by

" See Appendix V. For the special case for which W is a zero matrix, this
result has been given by Whittle. (31)
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Fn(J'u) :: eJuD = 1 exp [ 1 W M-.l{I (I 2jtiMQ)_-I}w]
II-2juMQ 11/2 - 2" t - - - -

(4. 08)

where I is the unit matrix, Q is the matrix of the quadratic form, M is ~e

moment matrix of the variables, W is the (column) matrix of the means of the

variables, "t" ,denotes "transpose ofi', and I... I denotes "determinant of".

The probability-density distribution of n is given by the Fourier transform of Fn:

joo
[] 1 5 -sDpr n = 21Tj Fn(s) e ds

-joo

Now, the probability of error is

o
Pe = pr[D<O] = 5 pr[D]dD

-00

(4.10)

Substituting (4.09) in (4. 10), changing the order of integration, and integrating

on n, we obtain

joo
1 5 Fn(s)P = dse - 2iTj s

-joo
(4.11)

The path of integration in (4. 11) is taken to be indented to the left at all j-axis-

s ingula ti tie s .

Let us now evaluate equations (4.08) and (4.11) for our special case. It is

first useful to define the complex correlation coefficient of the two message

waveforms:

(4.12)
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" NThe real and imaginary parts of this, A and A, are, respectively, the

values of the normalized physical cross -correlation function of the message

waveforms at the origin, and at a displacement of l/L1£. The magnitude,o
I AI, is the value of the envelope of the normalized physical cross -correlation

function at the origin. It is easily shown, using the Schwarz inequality, that

IAI<l.

It may be shown'" that the moment matrix M, the elements of which are

m .. = w.w. - w.w.
IJ 1 J 1 J

is

(4.13)

,... N
(13+1) 0 A(f:>+I) A(13+1)

N 1\
0 (13+ 1) -A((3+1) A(13+1)

M == 13
" ,..,

13IA/
2

+1
(4.14)

A(f:>+I) -A(p+l) 0
N 1\

13/A/
2

+1A(13+ 1) A(13+1) 0

*"It may also be shown that

"'( (p+ 1)

0
w= (4. 15)"r(13A+l)

N
113A

where 'Y= ~. From (4.05) it is seen that the matrix of the quadratic form is:

.,. See Appendix VI for outline of method.
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o

o

-1

o

o
o
o
-1

(4. 16)

(4. 17)

Substituting equations (4.14) through (4.16) ln (4.08), we obtain, after consi-

derable matrix algebra +~.~

[
kl s(l+kZs) ]

exp 1 - k
3
s(1+k

Z
s)

1 - k3s(1+kZs)

whe re we have written

kZ = Z((3+1)

k 3 = Z(3Z (1- I AIZ)

(4. 18)

The integral obtained by substituting equation (4.17) into (4.11) apparently

cannot be evaluated in closed form except in the special cases CT = 0 and a = o.
In the former case ~.1/11

P _ 1 [1 f { (1 -x')a ZE ~e - 'Z - er IN
o

nhere

+ See Appendix VI for outline of method.

+. See Appendix VII.

(4.19)
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(4. 20)

This, as should be expected, is the probability of error for a simple correlation

detector operating in the face of white, Gaussian noise , (34) since in this case

the path has no random component.

'+Fora = 0,

p =e (4. 21)

where r 1 andr 2 are the roots of

2 1
k2y + Y -;:- = 0

. .K3
(4. 22)

r 1 is the positive root.

In the general case (aI=O, erIO), we may put the probability of error in a

form which is more convenient for numerical evaluation. This is +:

1T/2 k . 2e- S e - 7
s1n

pe - k6 . 2 2
o 1+k4tan e

where

de (4.23)

k4 = VI + (4k2!k3)

kS I (kl/k3)

k6 =[lk~-1)/1Tk4]exp [- ks/k; J
k7 = ~k;-1)/k4] kS

tit See Appendix VII.

(4.24)
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It is to be noted that the only characteristics of the messa~e waveforms

on which the probability of error depends are their energy and their complex

correlation coefficient. (Note especially the dependence on the quadrature
N A

component 'of correlation,' A, as 'well as the in-phase component, A; this
/'oJ

dependence on Aderives from the phase instability of the path.) For any given'

set of channel parameters, a, CT, N , there is a value of, Awhich minimizes P ;o e

may be written as

unbroken-line curves of Figure 4-1. The family parameter of these curves

(4.25)

this value, A t' indicates the relationship between the two message waveformsop

for optimum system performance. We shall evaluate A t as a function ofop

the channel parameters in the next chapter. Substituting the values of At -, op

obtained there into equation (4.23), we may compute values of P for a systeme

with optimally-rel,ated message -waveforms. These are presented as the ."

Now, it is easily shown(16) that the mean-square value of a,.' the path strength,

is given by

(4.26)

Hence, the family parameter of the curves of Figure 4-1 is the 'ratio of the

average received signal energy to the noise power-density. _In progre.ssing

along any ore curve, this ratio is held constant, while the ratio, 2/'12 = 2cr2/a
2
,

of the average energy received via the random path-component to that received

via the fixed path-component is varied. The effect of an increase in the
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average strength' of the random component, at the expense of a corresponding

decrease in the ~trength of the fixed component, shows up as an increase in

probability of error. It is interesting to note how rapidly the performance of

the system deteriorates as the path changes from one which is completely

fixed (2/1'2 = 0) to one with the same average total strength but with equal fixed

and random components (2/'(2 = I).

The effect of path dis turbanc:e-s on the performance of the system is

strikingly illustrated by considering P for the large signal-to-noise ratio in
e

the two limiting cases, (J" = 0 and a. = O. In the former case, letting A. = A. t = -1. op

(see Figure 5-1), we have from equation (4.19)(35):

[ 2 ]
. a. E

P
exp - ~

(4.27)~
e E N~~OO

2
1111

N:0

In the latter case, letting A. = A. = 0, we have from equations (4.21) and (4.22)opt

(4.28)
1

E
N-"'oo

o

Pe
2 (J"lE

No

As would be expected, the probability of error approaches zero with increasing

signal-to-noise ratio very much more slowly when the channel is perturbed by

severe path distur.bances as well as by additive noise, than when it is perturbed

solely by additive noise. + It is interesting to note, however, that the system

is capable of operating without error in the absence of noise even when the

channel has random path disturbances.

+ To estimate the rate of approach of Pe to zero for large E/N for other values
2 0

of 2/"{ than the ones considered above (0 and (0), see Figure 4-1.
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B. T Known: 0 Unknown.

The probability of error for a receiver with the likelihood computer

of equation (3.12) is much simpler to determine. Since A I is a mono-
m

tonic function of Ig I, it is evident that equation (4.02) reduces tom

(4. 29)

where we have primed Peso as to distinguish it from the probability of

error calculated in the last section. In evaluating equation (4.29) we shall

assume that ~ = 0; this is the optimum correlation coefficient for a system

which has no phase information. +

Let us first assume that the path strength, a, is known to the receiver.

It is easily shown+. that the probability of error, conditional upon knowing a,

is

The total probability of error is then pi (a), averaged over a:
e

00

p~ = S pr[a] P~(a) da
o

(4. 30)

(4.31)

pr[a] may be obtained from equation (2.05) by integrating it over 8. Using

this result in (4. 31), we immediately obtain +++

... See Section V. B, page 62.

++ See Appendix VIII. For the general case of this result, for kfO, see
equation (37) of reference 34.

+.+ See Appendix VIII.
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,- 1 [~12 JPe - fj+Z exp - 2(~+2) "(4.32,)

I

f
i

, I
I't!

"

Equation (4. 32) is plotted as the broken-line curves of Figure 4-1,

along with the curves of equation (4.23). As we might expect, the advantage

of the receiver which has knowledge of the mean path phase-shift, 0, is not

great, except in the region of high path phase ..stability (small 2/12). This

advantage is expressed in terms of power in Figure 4-'2, in which the ordinate

gives the increase in power which would be required in the system without -

phase knowledge in order to reduce its probability of error to that of the

system which has phase knowledge. The family-parameter values of Figure 4-2

(average received-signal-energy to noise-power-density ratio) are those for

the latter system.

Equation (4.32) again illustrates the change, between the limiting cases

CT = 0 and a = 0, of the rate at which the probability of error approaches 'zero

with increasing signal-to-noise ratio. For <r = 0 (and, hence, ~ = 0), the

approach is exponential:

(4. 33)

while for a = 0 (and, hence, 1= 0), the approach is inverse, as in (4.28).

For other values of 1= a./<r, the approach to zero is roughly exponential for

small values of E/N (small ~), and roughly inverse for large values of E/No 0

(large (3); the point at which the change in behavior occurs depends on the

values of the path-strength parameters, a and CT.
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CHAPTER V: THE MESSAGE WAVEFORMS: SPECIAL CASE

In this chapter we shall turn our attention to the second question we asked

in Section B of Chapter II: "What are 'suitable' message waveforms for use with

the channel under consideration?" That is, we wish to determine the set of mes-

sage waveforms which optimizes, in some sense, the performance of the systelTI.

As an optimization criterion, we shall choose the minimization of probability of

error, for this is the yardstick of system performance which is of primary im-

portance to the communications engineer.

As in the last chapter, we shall only consider receive rs which make a decision

by choosing the ~ posteriori most probable message waveform; and these receivers

only for the simple special case in which there are but two equi-energy, equiprobable

lTIessage waveforms, and only one path. We shall postpone comments o'ri the more

general, multi-me ssage -waveform, multipath case until the concluding chapter.

A. T Known: 0 Known.

As we have noted in the last chapter (see equations (4. 18), (4.23), and (4.24»,

the only characteristics of the two message waveforms on which the probability of

error depends in the special case under consideration are their (common) energy,

E, and ,their normalized complex cros s -correlation coefficient, A (see equation

(4.12». Thus, for a given energy, specification of an optimal set of message wave-

forms consists merely in specifying that value of cross -correlation coefficient which

lTIinimlzes the probability of error. That is, we require the value of A = X. + jr. for

which the conditions

ape 0ak =

ap e 0-- =at

(5.0la)"

(5.0lb)
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are simultaneously satisfied, and for which

a2P
e

>0d~A 2

()2Pe
~O

d12

(5.02a)

(5.02b)

In addition, if we obtain more than .one solution for (5.01) and (5.02), we require

the one which yields the absolute minimum of P •e
Now, it is easily seen from equations (4. 18) that P depends on the quadraturee

N .
component~ A, of the cross -correlation coefficient only in the square. Therefore,

we may write (5. Olb) as

N ;)Pe= 2 A =
B(kZ)i

o (5. 03)

l ~

We thus have immediately a possible solution for A:

N

A = 0 (5. 04)

It is difficult to show precisely that this solution is indeed the one which we require,

i.e., that it satisfies (5.02b), and yields, in conjunction with some solution of

(5. Ola) and (5. 02a), the absolute minimum of P. We may, however, construct a. . e
plausible, but not rigorous, argument that this is so.

The probability of error is the probability, on the hypothesis t~at S 1(t) was

sent, that the decision variable, •

2
(J"

D =
Nlo

(5.05)

is less than the decision threshold, zero. Now, roughly, we should expect that

.Cf. equation (4.03).
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the larger D is on the average, the smaller will be this probability that D is

less than the threshold. Thus, the problem of minimization of P with respect
e

to X. would seem to be related to that of ma,ximizing Dwith respect to x.. Of

course, we should not expect in general that there will be a rigid relationship

between the two problems - - - one may envisage special situations in which a

change in A, while increasing the average value of D, may so increase, say, the

variance of D, that P would also increase, instead of decreasing. But we aree

interested at this point not in exact solutions, but in trends, and for this purpose

an inve stigation of the problem of maximization of D with re spect to A would seem

to be justified.

The average value of D may be obtained ~asily from the characteristic function,

FD(s), by use of the relationship(36)

D = (5.06)
s=o

Applying (5.06) to (4. 17), we obtain

(5. 07)

t I 12 "2 N 2 NNow, remembering that A = X + A , we see that setting X. equal to anything

other than zero will cause a decrease in the first term of (5.07) while not affecting

the second term; that is, D is maximum with respect to 1. for ~ = O. We may

perhaps obtain a better understanding of this result by using the fact that the first

and second terms of (5.07) are, respectively, the averages of the corresponding

'i terms in (5.05):+ on this basis we see that settil1.g1 equal to anything other than ..

zero decreases, on the average, the difference of the squares of the correlation

envelopes in (5.05) while leaving the difference of the correlations themselves un-

+-This may be shown with the help of equations (A6-6), (A6-7), (A6-9), (A6-12), and
(A6 -13) of Appendix VI.
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- rJ
It is therefore plausible that the solution A.= 0

.1\.
corresponds to the minimum probability of error for any given value of -A.

A
On the other hand, we may guess from (5.07) that the optimum value of A

lie s somewhere between 0 and -1. For, although the fir st term decrease s as 1.
progresses from 0 to -1, the second term increases, andD wilLbe maximuin

somewhere between these extremes,' depending on the values of f3 and y. We

should, in fact, expect from (5. 07), as well as from physical reasoning, that

the following re sults will obtain:

(1) for a path with no random component, i.eo , -with stable phase

( 0- = 0, 'Y = 00, 1312 finite): '" t = - 1op

(2) for a path with no fixed component, i. e., with completely-random
~ ~
pha se (a = 0, "I= 0): A t = 0op

A
(3) for a very noisy chann~l (No~ 00, 13 ...... 0): AOp~ -1

(4) for a noiseless channel (N = 0, 13 =00): t t = 0
o op

For the first and third of these conditions, the decision variable, equation (5.05),

contains only the correlations, gl and g2; their difference is maximized on the

Aaverage by making the two message waveforms antipodal, that is, by setting A = -10

For the second and fourth conditions, on the other hand, the decision variable con-

tains only the correlation envelopes; J g 11 and Ig2

'

; their difference is maximized

on the average by making the two message' waveforms orthogonal, that is, by setting

"A = O.
The re sults predicted above may indeed be shown to be true by minimizing the

probability of error with respect to 1, with 'X. = 10pt= O. The optimum value of ~

thus found is shown in Figure 5-1 as a function of the channel parameters, ~ 2 and

1312. The first of these parameters, it will be recalled, is the ratio of the average

strength of the random path-component to the strength of the fixed path-component.
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2 2(J"2E
The 'second, 131=N ,is the ratio of the average energy received via the

o ,
random path -component to the noise power -density. Figure 5 -1 was obtained

by numerical minimization of 'equation (4. 23).

Physically, the above results may be illustrated as in Figure 5-2, which

shows a pos sible physical cros s -co~relation function of the two me s sage waveforms.+
N ~

The fact that k t = 0 indicates that this function passes through zero one-quarterop "

of a carrier period from the origin, and hence through an r. f. peak at the origin.
A.

The fact that X, t is negative indicates that this r.f. peak is negative. For channelop

conditions (2) and (4) above, the correlation function is zero at the origin as well as

at displacements of one -quarter period from the origin; hence the correlation func-

tion envelope is also zero at the origin.

We have until now assumed for convenience that the modulation delay, T, and

the mean fixed-component phase -shift, 0, of the path are zero. If this is not so,

the foregoing results still apply:; the receiver restores the problem to that we have

just considered by introducing an identical delay, T, and phase -shift, 0, into the

stored message waveforms (cf. equations (3.05) and (3.07».

B. T Known: 0 Unknown.

In this case, when 0 is unknown, the receiver makes its decision according as

the difference, Ig 11 - Ig21, is greater than or less than zero (see Section IV.B,

page 55). In the light of the discussion in the last section, it is clear that this dif-

ference is maximized on.the average by setting k = 0, so it is plausible (as well as

satisfying to the intuition) that this value of Awill minimize the probability of error.

Thus, optimally~' the'envelope of the correlation function in Figure 5-2 goes to zero

at the origin .

• Of course, both the carrier period and the amount of phase modulation in this Figure
are exagge rated for the sake of clarity.
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CHAPTER VI: CONCLUDING REMARKS.

In answering the questions we asked in Section 1.B, we have made the follow-

ing re strictions and as sumptions:

(1) The additive noise is stationary, white, Gaussian, and statistically

independent of the multipath medium (see page 10);

(2) The paths of the multipath medium are statisti'cally independent of

one another (see equation (2.07), page 15, and the discussion pre-

ceding equation (3. 17), page 40);

(3) The paths are resolvable, i.e., their modulation delays satisfy con-

dition (3.~06) (see page 35);

(4) The medium is non-time -varying, at least for the duration of a me s-

sage wa;eform (see page 32);

(5) The system performs on a per -waveform basis (see page 32).

In addition, in evaluating the performance of the various systems derived in

Chapter III, and in determining optimal relations among the message waveforms,

we have assumed that

(6) The receiver's knowledge of the multipath medium is ~ priori knowledge,

and correctly represents the medium (see page 46);

and we have restricted ourselves to consideration of the special case in which there

are only

(7) Two equi-energy, equiprobable message waveforms, and one path,

(see page 45).

Avenues for future work are immediately suggested by these assumptions and

restrictions; that is, we may ask for the solutions to the problems we have invest ...'

igated, but with any or all of the above assumptions and restrictions removed. We

shall comment briefly here on these var.ious possible extensions of the present work.

The assumption that the additive noise is Gaussian would seem to be realistic

enough in most practical cases, and extension of the analysis to non-Gaussian noises
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would not at present seem to be worth the concomitant severe complication of

the mathematics. Similarly, the assumption of the independence of the noise and

the multipath medium is in most case s justified. For, even if some or all of the

noise arrive s at the receive'r from distant noise sources by way of the multipath

medium, it would almost certainly traverse a different region of the medium than

that traversed by the signal, and these two regions would in general be statistically

independent. It is of course this independence of the noise and the signal-utilized

region, of the multipath medium which we have in mlnd in the last part of assump-

tion (1).

A clue to the extension of our probability-computer re sults to the non-white

noise case may be taken from the equivalent analysis for a channel which is dis-

turbed 'by noise only (37, 38,9:). In this case it has been shown that the r'eceived

signal is correlated not with the stored me ssage -waveforms directly, but with the

stored message ~waveforms after their modification by linear filtering. In part-

icular, for T» ~, the modifying filters have a (common) transfer function 'which ,

is equal to the reciprocal of the noise power-density spectrum, N(f). Intuitively,

one would expect the same results to apply in our case.

We may easily extend our previous work for the case of stationary noise to

the quasi-stationary case, in which it is assumed that the noise is stationary at

least for the duration of a message waveform. For this latter case, our previous

results still apply, but now the parameter N , or more generally, the noise spec-
, 0

trum N(f), will vary from message waveform to message waveform, along'with the

other channel parameters, a., CT., 0., T.. The more general non-stationary case
, 1 ,1 1 1

is of course considerably more complicated, and of dubious practical interest.

The assumption of independence of paths is most probably a realistic one, for

different paths generally pass through independent regions of the multipath medium.

One exception to this, which is of possible interest, is the case in which some or all
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paths have a common random attenuation (e. g., in the case of an ionospheric

medium, where some paths may pass through a common region of an absor-

bing layer; say, the "D" layer). This case would probably lend itself easily

to analysis. Besides this special case, however, it is doubtful whether a

generalization to the dependent-path case would be worth the labor.

As we have noted in Chapter II (see page 23), assumption (3) may be al-

most automatically satisfied, for if two paths are completely unresolvable,

they may be considered ~ priori as a single path. To be sure, there is a no-

manIs-land in which two paths neither can be considered to be completely un-

resolvable nor can strictly satisfy (3.06); this is the small region in which

the difference of modulation delays is approximately ~. In most cases, how-

ever, one would expect few delay differences to fall into this category, and one

would feel that our re sults would apply with no great error if we established a

sharp line of demarcation between "unresolvable" and "resolvable" delay dif-

ferences, say, ~; we would then aIbitrarily consider as a single path all

paths whose modulation delays differ by less than this amount, and consider

as completely resolvable all paths whose delays differ by more than this

amount. The only important case in which this technique would be suspect,

and in which a more general analysis which does not make use of assumption

(3) would be in order, is the case where there is a continuum of paths; for,

in this case, large numbers of delay differences would fall into the no-man's-

land category, that is, near the line of demarcation. The more general anal-

ysis of the probability computer has in fact been performed by Price for the

special case in which the paths have no fixed components(8a).

Assumptions (4) and (5) were made in order to avail ourselves of the simpli-

city of analysis which evolves from use of only the first-order joint distribution

of the multipath characteristics. The obvious generalization is to eliminate the
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nece ssity for the se as sumptions by taking into account higher -order distri-

butions. *' Again, Price has done this for the special casei~;'~hi~h' there are

no fixed path-components(8a). Extension of his excellent work to the case in

which fixed path-components are present would be of great interest.

Elimination of assumption (6) would allow the determination of the effect

on system performance of errors in the receiver's a priori knowledge of the

multipath medium .. It would also allow the evaluation of the performance of

the system when the receiver's knowledge of the medium is based on measure-

ments, and would enable a comparison to be made between system performan-ce s

with and without the benefit of measurements.

Extension of the analyses of Chapters IV and V to more general ca,ses than

that of assumption (7) would be of great interest, but also, unfortunately, of

great difficulty. A simple extension of the probability-of-error analysis of

Chapter IV which would give an insight into the relative effects on system perfor-

.inance of the different paths of the medium would be the evaluation of P for. e

the case in which there are two paths of equal.total energy: it would be inter-

esting to determine how rapidly P increases as one path changes from ae

purely-fixed to a purely-random one, while the other path remains, say, purely

fixed.

In regard to the extension of the work in Chapter V to the general M-wave-

form, L-path case, it seems clear that the minimization of probability of error

would be with respect to M~M-l). [L 2 - (L-I)] complex ~ariables instead of

2just one as in Chapter V.' These are the values, at the L - (L-I) .',distinct

delays, Ti - Tk(i, k = 1, ... , L), of the M~M-l) complex cross-correlation
" .

function modulation-waveforms, ++ \ X*(t-T.) x (t-Tk) dt (p;f m). When the. J p 1 m

See footnote, page 32.
We say M(M-l)/2 modulation waveforms, instead of M(M-l), since these
waveforms come in complex-conjugate pair s.
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fixed-component phase-shifts, (0.), are unknown, one would expect that minimum.
. 1

probability of error would occur when all of the se variable s are zero, that is,

when the envelopes of all the message-waveform cross-correlations go. to zero

at all delay difference s, Ti - Tk.

When the paths are not completely resolvable, and a more general probabil-

ity computer which is not based on assumption (3) is employed, an additional

M LiL-l) variables are added to the minimization problem: the values, at the

L(L-l) . +) .2 .. modulatlon delays, Ti - Tk (Ti >Tk), of the M complex auto-correlatlon
, .' ~

function modulation-waveforms, \ x* (t-T.)X (t-Tk) dt. These are assumed, . J m 1 m

to be zero in the resolvable -path case. Finally, if the waveform energies are

not considered to be given originally, an additional M energy variables

(S IXm (t) 12 dt) enter into the problem.

Another problem of intere st is the evaluation of the probability of error for

Minimization of probability

M2+Mof error in this case would involve specification of the complete 2 auto-

and cross-correlation functions of the M message waveforms, or, more pre-

cisely, their envelopes. Ideally, one would like to have all of the cross-

.correlation envelopes vanish for all values of their arguments; but there are

probably physical-realizability constraints which prevent this, and these would

have to be taken into account in the minimization problem.

In Chapter I we split our analysis problem up into nearly-independent parts,

but noted that this was for. convenience of analysis, and that, more strictly, the

problem should be considered as an integrated whole. Perhaps the first step

that should be taken in the direction of integration is that of considering the

channel-measurement and probability-computer problems together. That there

should be some intimate connection between the two problems would seem to

+
J

We sayl~(L-l)/2 value's, instead of L(L-l), since the complex auto-correlation
functions are (Hermitian) symmetric about the origin.
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be indicated by comparison of the re sults of Section II. B. I and of Chapter III;

the se show that precisely the same operations of correlation and sampling are

used lor channel measurement and for probability computation. One may ask

such questions as: Should the message waveforms themselves first be con-

sidered by the receiver as channel-:-sounding signals, and then the hypothetical

.channel-characteristic distributions so obtained used for probability co~put-

ation?+ Or, perhaps, should known channel-sounding signals and message

waveforms be sent alternately, and if so, what proportion of the transrpissio.n

time should be allotted to each? Is there some form of measurement already

implicit in the probability computers of Chapter III, as some of Price's work(8a)

would sugge st ?

Besides the questions relating to integration of the problems we have in-

vestigated separately, there is a whole group of questions relating to problems

we have not even considered. How, for example, can we supply the transmitter

and receiver with identical information about the channel, as we have assumed

to be the case? By transmission of the transmitter-to-receiver sounding data,

which is available at the receiver, back to the transmitter? (How will channel

disturbances affect this transmission?) Or, perhaps, by establishing a separate

receiver -to-transmitter sounding link? (Is the channel reciprocal? )

We may put the gist of this chapter in just a few words: there are still many;

many que stions which must be answered before we may say that we have a thor-

0ugh understanding of the problem of multipath communication.

... Cf. footnote, page 33.
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APPENDIX I: THE COMPLEX CORRELATION FUNCTION

The real part of equation (1.04) is

in which

A" N!(t)= X(t) cos 2nf t - x(t) sin 2nf to 0

~ A N!(t)= x(t) sin 2nf t + x(t) cos 2nf t
o 0

" Nand similar expressions hold for 1(t) and ~ (t). From (Al-2b)

r-I 1 "( .1) f'oJ 1,(t+~) = x t+ ~ cos 2nf t - x(t+~) sin 2nfot
o 0 0 0

(ll-l)

(Al-2a)

(Al-2b)

(Al-3)

Now, it has been assumed that ~(t) represents a narrow-band waveform.
This implies that x(t) remains essentially constant over many cycles
of carrier, so that we may write x(t+ 4~ ) = x(t), and hence

. 0

Similarly,

N 1 "~ (t+ ~) = ~ (t)
o

(Al-4)

N 1
~(t+ ~) =

o

A

~(t) (Al-5)
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The cross-correlation function-of 'the physical waveforms~

But from (Al-4) and (Al-5) ~e have also

from which it follows that

,.. 1\

~ (t) and ~ (t),is

(Al-6)

(Al-7 )

(AI-B)

which was to be proved.

By inserting (Al-2a) and a similar expression for, ~(t) in (Al-6),
one obtains, after some trigonometric manipulations and the use of the
narrow-band assumption to eliminate integrals of double-frequency terms:

where

U>('t)=A('t) cos 2nf 't + B('t) sin 2nf 'tToo

A(1:)= ~ j [~(t)y(~) + ~(t)y(t-'t)] dt

B(1:)= - ~ ) [~( t)y( t-'t) - x( t)~( t-1:)J dt

(Al-9)

(AI-IOa)

(AI-IOb)

The envelope of Ijl(t) is just [J:;j. But the magnitude of ~ (t), equation

(1.05), is just twice this, or 2/A~'+B2. , which was to be shown,
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APPENDIX II: ! POSTERIORI DISTRIBUTION OF MULTIPATH CHARACTERISTICS

Using (2.0~, (~5), and (~.07), (2.14)may be written as

-I
i

2a.-2a.a. cos
J. J.J.-

220.
J.

(A2.-1)

where the factor

1
K =------

(2nWrlJ6) T'WN

(A2-2)

is independent of (a.) and'(S.). TI is the duration of n(t), the output ofJ. J. .1

the multipath medium; it is greater than T, the duration of the sounding
signal, because of the spread of the delays in the medium. Using (2.06)
for ~(t)and writing ~(t) = z(t)ej2nfot, the first term of the exponent,
of (A2-l) may be written (dropping, for convenience,the limits on the
integral) as

La.x(t...,;.)c-jSi!2 dt
• J. J.
J.

(A2-3)

We write, as in going from (2.10) to (2.11),

r z.( t)x( t-"t. )dt = g(-r.)J J. J.
- ,

(A2-4)
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and also

. (A2-5)

(cf. equation (2.09». Using .(A2-4) and (A2-5), we may r~wri te (A2~3):'

Substituting (A2-6) into (A2-l), we get

prr(a.), (e. )/(". ),t;,~1 = K"[TT al.J exp["2l \' Lcokaoak + L d.a. ]L
l

J. J. J. ~. ~ 1 J. ~ 0 ~ ~~ . { ~
(A2-7)

where

(A2-8)

(A2-9)

a.
+ J,.2

0.~
(A2-l0)

& ik in (A2-9) is unity for i=k, zero for ilk. In order for (A2-7) to be

useful to us, we should like it in the form of the product of first-order

distributions. This will occur if the double summation can be written as

a single summation for all values of (a.), (e.), and (~.), for then
J. ~ J.

(A2-7) is a product of exponentials. Thus, we require that c
ik

= 0
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(ilk) for all (a.), (e.), and (~.), or at least c.k«c .. (ilk). Noting
~ 1:-. ~ ~ ~~

that f(O) :::ep(o) = 2E, where E is the energy of the sounding signal, this

l~st condition leads to

all ilk (A2-11)

from which (2.16) follows immediately. Using (A2-9), (A2-10), and

(~-ll) in (A2-7), we have, after some algebraic manipulation,

2 t .'[ ~1T [ a.-2a..a. cos (e.-d.)]
pr (a.),(e.)/(~.),'" = K' a~ exp - ~ ~ ~ 2 ~ ~~ ~ ~ . ~ 2 I~ o.~

(A2-12)

wherea! Jcr!, and <f!are given by equations (2.18). To find K', we integrate~ ~ .~

(A2-12) ov~r all values of (a.) and (e.) and equate the result to unity ••~ ~

(A2-l3)
(2~17) follows directly from (A2-12) and (A2-13).

In order to derive (2.22) we note that

(A2-14)

But from (A2-2), (A2-8), and (A2-13)

(A2-15)

• For the evaluation of (A2-13), cf. reference 24.
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where K" is independent of ('1:.). Equation (2..22.) results from :i:.ns.erting. 1

( , r:' y. (14) . K' ,A2-.J:;) i 1n A2- , and l'e-tt1ng C'= pr[z:7,Ef.

l
.~
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APPENDIX III: MINIMUM-MEAN-SQUARE-ERROR MEASUREMENT OF AN UNKNOWN

IMPULSE RESPONSE

We desire the solution of equation (2.25):

Expanding this, we obtain

~,M . [ r g(t) Og(t)dt ] = EN,M [r hm(t) &g(t)dt]
o 0

(A3-1)

(A3-2 )

since dh (t) ~ O. Now get), as indicated in Figure 2-5, is the output of the
m

estimating filter, whose unit-impulse response is he(~). If yet) is the
filter input, then

g(t) = ~ lXlhe (1:)Y( t--t}ch

-00

yet) is, in turn, the sum of the noise, net) and the output of the

(A3-3)

unknown filter, whose unit-impulse response, h (~), is to be estimated.m
That is

y(t) = ~a> hm(1:)x(t4)ch + n(t)

-00

where x(t) is the channel input (sounding signal). Combining (A3-3)

.and (A3-h):

(A3-40

00

g(t) = J~
-CD

h (~)h (a)x(t-~-cr)dadt +e m (A3-5)
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The variation ofg(t) is thus

Og(t) =

(])

~ ~ hm(0) x( t4-0)Jhe ('I;) dam- +
-00

00 .

~ n(t4)Jheh)m-
-00

(A3-6)

Remembering that net) and h (~) are independent, and assuming thatm
EN[n(t)] = 0, we obtain for the right-hand side of (A3-2):.

+'00

EM[~: ~ ~ hm(t)hm(o)X(t4-0)Ohe h )dom-dt ]

-00 ,

Similarly, the left~hand side of (A3-2) is

(A3-7)

~ [ ):) rS I he ('I;' )hm (crl)hm (cr)x( t4' -0' )x( t4-crHhe ('I;)do' m-: dom-dt J
00

+~ [ll ~~he ('I;I )'PNh-'I;' )dhe ('I;)m-' m-J (A3-8)

-00

In deriving (A3-B) we have assumed statis~ically-stationary noise with

auto-correlation function

(A3-9)

pince we have assumed (cf. page25) that II is essentially greater than

the duration of h (1:), the limits' on the first integral sign in (A3-7)m

may be extended to (- co, + 00). without changing the value of the integral.
. .

The same state"me'nt may be made apprOXimately a bout the first term in

(A3-B); for this term is the product of the integlral of the n signall'

component. of the estimate of h ('t') and the variation of this component,
m

•I .•e., the first term in (A3-5).
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and one would not expect the signal component to last appreciably longer
than h (~) itself.

m

Thus extending the limits, and equating (A3-7) and (A3-8), we get

~ ~he(-r )droEM[ \ \00\ ~ he (-r' )hm(a' )hm(a)x( t...,;'-a' )x{ k-a)da'dr' dadt

- 00 -co co 00

+ A ~ he (-r' )'PN(-r...,;' )dr' - ~ ~ hm(t)hm(a)x(t--T:-a)dadt =0

-co ~co (~-W)

'"'t( o.
to be

We neglect the physical realizability condition,he('t) = 0 for
Then Oh ('t) is arbitrary for all~, and in order for (A)-IO)e

satisfied, the factor which multiplies dh ('t) must be zero fore
all '1;. Setting it equal to zero, Fourier transforming the resulting'to.. dequa ~on, an averaging over the ensemble of all possible unknown
filters, we obtain

IX(f)'~+LlHe t(f)~(f) - IHm(f)(2 X" (f) = 0
op

(A.3-11)

Equation (2.26) follows from this immediately. In order to show that
this solution yields a minimum, rather than a maximum or inflectional,
error, one merely finds the second variation of e, and shows that this
is positive for H (f) = H (f).

e e top
To derive equation (2.33) for the optimum spectrum of x(t), we

start with equation (2.24) for the mean-square error. Using (A3-5) in

.See discussion, page 26 •

•• Cf. equation (I.07b), Chapter I.
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this, and remembering that the average of the bracketed expression in
(A3-10) is identically zero, we obtain for the minimum mean-square error

E is also expressible in terms of frequency domain functions; usingm

Parseval's theorem in (A3~12) and averaging:

Using equation (2.26) for H (f), (A3-I3) becomeseopt.

Eel r H (f) 2 .[1 _ ~x.(f)1 Z ] .- df
m 7i' JIm I N (f)ill+!X(f)12

-co r

(A3-13)

(A3-J.4)

• We now constrain the energy in the

transmitted waveform to be constant:

00iIX(f)12
df = K

>--00

In order to find the optimum X(f), we must solve the variational
problem (26)

(A3~15)

J(E + AK) = 0m (A3-I6)
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where A is some constant. Using (A3-14) and (A3-1.5), (A3-16) becomes

00 ., 2I{ N (f) H (f) I.A } t . 2 .
A - r m a X(f) df = °

-00 .... [Nr(f);L\+ IX(f)12F I I (A3:-17)

If we constrain IX(f)12 to be zero outside a certain band, Fl (cf.
equation (Z.31»), then 8IX(f)12 is also zero there, and (A3-17) is
satisfied for those frequencies. For frequencies within the band, on
the other hand, we must try to set the bracketed term in the integrand

•equal to,zero. This l~ads to the equatio.n

).. I X(f) 14 + 2A.L\Nr(f) IX(f) 12 + Nr(f) {lL\N r (f) - IHm(f) 12j= o.

(A3-18')
If (A3-18) and (A3-15) can be simultaneously satisfied within the
band FI by a non-negative function IX(f)12, then the solution is.
complete. If, however, there are frequencies at which IX(f)(2 would
be negative, then the correct solution is simultaneously to satisfy
(A3-18) and (A3-l5) at all frequencies for which I X(f)12 turns out

Iznon-negative, and to set IX(f) equal to zero at.all other frequencies,
as indicated in equation (~.33). That this is indeed the correct
solution may be shown by taking the second variation of (E + lK):m

• One might be tempted to obtain another solution, X(f) = 0, by
writing S IX(f)12 = 21x.(f)181 X(f)l. This is a spurious solution,

,however, for the problem is actually phrased completely in terms of
IX(f)12 (cf. (A3-14) and (A3-IS). The second solution would
disappear if we replaced IX(f)12 by, say, S(f).
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(A)-19) is positive for all variations of IX(f)12• This implies first'

that the solution of (A3-I8) is in fact a minimum,and second..that the

further IX(f)12 is varied from this s'olution, the larger .is'tJieerror.

Therefore, one must satisfy (A3-18) as closely as possible, and for those

frequencies for which the solution is negative this is achieved by

setting IX(f)l~eqUal to zero.

Finally, equation (2,.35) follows directly on substitution of

(2.33) into (A3-14) 0
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APPEND!X IV: DERIVATION OF LIKELIHOODS.

Using-(2.02), (2.05), and (2,.07), the 'integrand of the (a.)-and
1.

(e.)-integrations of (3.03) may be written as
J.

1 [IT a.
J.

22.no.
1.

J exp [- ~No r I (t)_~(rn) (t)/2 dt

_LL a~+a~-2a..acos (e.-J.)]). ). ). J. ). J.
2 .. 20'. :i=l . ).

(A4-1)

L

cD
i=l

where T' is the duration of ~(m)(t ), which is given by (2.06), .1ith

x(t) = x (t~. The expansion of the first term of the exponent of (A4-1)m" ..~

follows exactly the derivation from (A2-j) to (A2-6) of Appendix II,

with the waveform index, m, inserted at the appropriate places.
Assuming the validity of (3.06), and noting that f (0) = (D (0) = 2E ,

m 1m " m

(A4-1) becomes, usi~g -(A2-6): '

a
i

exp [- ;~d {(Em .1) 2.. [(gmi. ai j di) ":',Wi] }
2 exp - N +:-2 ai ~ Re N+ 2" e e ai2noi 0 2CJi 0 0i

(A4-2 )

where

(A4-3)
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is independent of (a.), (e.), and m, and we' have written g . = g (~.)
~ ~ . ID1. m'~

(cf. equations (3.04) and (3.05». We obtain equation (3.07) by
integrating (A4-2) over the variables (a.) and (e.)p For these integrationsJ. J.

we need the results(24):

(A4-4)

and

exp [~t ]
4c3

(A4-5)

In (A4-4), cl is generally complex. In using (A4-4) in (A4-2)'we
note that

(A4-6)

The derivation of equation (J,.12)from equation (3.07) involves
merely a straightforward application of equation (A4-4).

In deriving equation (3.14), we first write equation.(3.07)
in the form

(14-7).
. 'th .where Pm is the random phase-shift of the m message waveform.

Then, (3.14) follows directly upon use of (14-4).
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APPENDIX V: CHARACTERISTIC FUNCTION OF A QUADRATIC FORM :OF GAUSSIAN

VARIABLES.

We are given a quadratic form,

of n variables,
WI
'W2

W=

•
W
n

which share a joint Gaussian distribution}c9)

(A5-1)

(A5-2 )

pr[WJ = __ I_
n 1

(211)21 M 12
(A5-3)

Q, is the matrix of the quadratic form, W is the matrix of the means
of the variables:

-WI
-'W2.

w= • (A5-4)
•

..!.
'Wn
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and M is the moment matrix of the variables, the typical element
of l-vhich is

m. . = (w. -w. ) (w. -w .) = w. w. - w. w .1J 11 J J 1 J ~ J

11 tit denotes n transpose of1l, and 1 •.. 1 " 11 determinant of" •
We require the characteristic function of the quadratic form:

(A5-5)

Fn(ju) = ejuD
= r~I e

juD
pr[WJ dW;t ••• dwn (A5-6)

-00
n times

-1Noting that M, and hence M , is sym:netric, we may write

The last equality follows from the fact that wtM-lw is a one-element
matrix. Using (A5-7), we find

(A5-8)

Then placing (A5-l) and (A5-3) in (A5-6), ~nd making use of (A5-8),
we obtain
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Using a result given'by Cramer(30), (A5-9) becomes

• , (A5-10)

Finally, noting that

we may immediately obtain equation (4.08) from (A5-10). I is the
unit matrix.
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APPENDIX VI: EVALUATION OF MATRICES OF EQUATION (4.08).

Substituting equation (4.07) 'in. (4.06), we obtain.

~"''''' .~. ;, ~ .
~,' .. t ~ .,';':'~_t. _ .•

i .

.e
g = aeJ
1 ~Ixi(t)12dt + ~n~(t)~ (t) dt

~ ~*(t)Xz(t)dt + ~ n~(t)~(t)dt (A6-l)

Noting that (cf. equation '(4.12)

~ h(t)\2dt = ~ IXz(t)1
2
dt = 2E

}~lf(t) Xz(t)dt = 2m..

and letting

.e
p = 2.aEeJ

and

we may rewrite (A6-1) as

gl = p + q1

g2 = PA + q2

i = 1,2

'.

(A6-2)

(A6-3 )

(A6-4)

(A6-5)
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In order to obtain the means and second self- and cross-moments

of the w-variables of equation (4.04), which are required for W- and

M-matrices, it is obvious that we must have the means and second self-

and cross-moments of the real and imaginary parts of gl and g2. These

real and imaginary parts are, from (A6-5):

" 1\ "gl = P + ql
N f'J IV

gl = P + ql

" ,,'" NN "g2: = p~ - pX + q2
N I\N rJA r.J
g2: = pX +. pX + q2

(A6-6)

Since we have assUmed-(without loss of generality) that 8 = 0 in the

joint distribution of a and e of equation (2..05), we maywrite immediately

for the various momentsof p andp, using results of Rice(16):.

1\
P = 2.aE

(A6-7)

"NP p = 0

From (A6-4), we mayvTrite

~i = ~ [~(t)~i(t)+ ~(t)~i(t)]dt

~i = ~ [h(t)~i(t)- ~(t)~i(t)Jdt
i = 1,2.

(A6-8)

• cr. Fig. 2.-2, in vThichlet 0= 0, and multiply all vectors by 2E.
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-A- ---;v-

Noting that n(t) = n(t) = 0, we have immediately

!, .'

i = 1,2 (A6-9)

Now , for all practical purposes, we may consider the bandwidth of the
noise, WN, very much larger than the transmission bandwidth, W.
Then, to a very good approximation, we may consider that

A A N ~ ~n(t) n(s) = n(t) n(s) = N o(t-s)o

where O(x) is the tQrac delta-function. We also note that(15)

3(t) 'it(s) = 0 (A6-11)

'.Using (A6-2), (A6-10), and (A6-11), we obtain for the various second
self- and cross-moments of the real and imaginary parts of ql and
~ of equation (A6-8):

2EN
'0

(A6-12)

Finally, because of the assumed independence of the noise and the
multipath medium, we may write for the cross-moments of the real



- 89 -
and imaginary parts of p a~d ql and q2:

A A " " 0p q. = p q. =
l. l.

-;::;::r -;:;:;- 0p q. = p q. =,J. J.

PoJ" -,::; ;:::- 0p q. = p q. =l. J.
f'J tv ~~ 0p q. = p q. =

J. l.

i =1,2 (A6-13)

We have thus evaluated (equations (A6-7), (A6-9), (A6-12), and
(A6-13» the.means and the various second self- and cross-moments of
the real and,imaginary parts of p, ql' and q2,.,1!sing these, we may
obtain the means and second self- and cross-moments of the real and
imaginary parts of gl and g2:'which in turn may be used to evaluate
the w. I s and the m .. f s of equation (4.13).

J. l.J

In order to obtain the inverse of the moment matrix, which is .
required in equation (4.08), we apply the followi"ng identity to
equation (4.14):

a" 0 b c d o -b -c
0 a -c b 1 0 d c -b

= (A6-14)b -c d 0 (ad~b2_c2) -b c a 0

I.

C b 0 d -c -b 0 a

Post-multiplication of the M-matrix by the Q-matrix changes
the signs of the elements of the last two' columns of 'the M-matrix.
Multiplication of the MQ-matrix by the scalar, 2ju,and subtraction
of the result from the unit matrix leads to:



o

"-l({3+1)

2: 1
> -{3llf -1-2jU{3

(A6-1.5)
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1 1\' .

~+1- 2juf3 0 -l(~+l)

1 ,.J
0 {3+1-2ju{3 l(~+l)

1-2juMQ = -2juf3 A N 2 1.l(~+l) -A(~+l) -{31 AI -1 2juf3
r-J A.l.{~+l) 1({3+1) 0

In inverting the (I - 2juMQ) -matrix, as required in equation (4.08),

we again make use of (A6-14) •. The determinant of the (I - 2juMQ) _
matrix may be evaluated through the use of the relation

a 0 b c

K
o a -c b

b -c d 0

_J. 2 Z Z= ~(ad-b -c ) (A6-l6)

c bod
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APPENDIX, VII: DERIVA'!'ION OF EXPRESSIONS FOR Pe •

We start with equation (4.11), in which we substitute equation

p. 1
e = - 2nj (A.7-1)

where kl'~' ana kJ are given by equations (4.18). The path of integration
is taken to be indented to'the left at the origin. We may immediately
obtain P for the special case, a = 0, by.noting that, in this case,e

k2: =. 2 and kJ = 0, so that

(A7-2)

" 2~s2
Equation (A7~2) is in the form of the Fourier i:nansf.om of __e __ ,

s
which is available in tables(32). Thus, we obt~in for a = 0.:

(~7-3)

• "The"tables referred to actually giV~ the right-hand side of (A7-3)
" 2k s

as'the sum of the transforms of -e 1 /s and l/s~ However, the path
of integration in the tables is taken t 0 be indented to the right ,at
the qrigip. NOH, the left-indented integral in",(A7-2) may be written
as'the'sum'of two,other i~tegrals having the same integrand: one along the,
j-axis 't-li th an indentqtion to the right at the origin, and one alo~ a
closed contour of infinitesimal radius which encir~les the origin. The
'.. ' '2~s2
fi~st of these is'the right-indented transform of -e Is, and the ,
second may 'easily be shown to be equal to the right-indented transform
of lis. Thus, the.right-hand side of (A7-3) is also equal to the

2k s2
left-indented 'transform of -e 1 Is, equation (A7-2).
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This, with equations (4.18), leads directly to equation (4.19).
We may evaluate Pe for the case a = 0 by the method of residues.

For this case, kl = 0" Writing (A7-l) in terms of the roots, .rl and r
2
,

of the quadratic, 1 - k3S(1 + k2:S), we have

(A7-4)

where

(A7-5)

,.J
s.

is taken to be indented to the left at the
value of the integral. Since the j-axis path
or the right half-plane, without changing the ,..

s

Since the integrand of the integral in (A7-4)
vanishes as .j- as s+co, we may close the path

s
of integration by enclosing either the left

origin, the former contour encloses only one
pole of the integrand (see Figure A7-1), that

FIGURE A1-1
at s= r2(r2 < 0), and the integral may be eval'uated by calculating
the residue, R, in that pole, and multiplying it by 2nj (33):

(A7-6)
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R is easily calculated:

(A7-7)

Equation (4.21) results from the substitution of (A7-7) into (A7-6).
In the general case (0 I 0, a I 0).1equation (A7-1) may be

put in a better form for numerical computation by the following
method. We first shift the path of integration from the j-axis to
the left by an amount 2~l' this does not change the value of the '
intBgral because no singularities of the integrand are crossed in
the pr~cess (~ee Figur~.A7-1; the singularities at r1and r~'are now
essential singularities). Then, making the change of variables,
s ~ 2~ (jz-l), and noting that the imaginary part of the resulting
integrand is odd aboutz = 0, and the real part even, we obtain

2
p = k4-1

e n ~co
o

2

[
_ ~(z +1) ]

exp z2 +k~
(A7-8)

where k4and k, are given by equations (4.24). Now, making the
further change of variable, z2 = k~ tan2e, and noting that
1 + tan2e = sec2e~ we obtain the desired result, equation (4.23).
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APPENDIX, VIII: DERIVATION OF EXPRESSION FOR Pl.

e

We v1ri te, as in equation (A6-5) of Appendix VI:

gl = 2.aEeje + ql
g2 = q2. (A8-1)

where we have used the assumption that A = o.
represented vectorially as in Figure A8-1.
Now, the real and ~maginary parts of ql and
q2 can be expre~sed in terms of linear
operations on the Gaussian functions ~(t)
and ~(t). (Cf. equation (A6-8).) Hence(28),
" f\J~ and qi are.also Q-aussian. Furthermore,
we have from (A6-9) and (A6-12): FIGURE A8-1

-;: ~
q. = o. = 0 .

.~ '"J.
"2 1\.12o. = q. = 2EN

"':t 1. 0
A '"~ ~ = 0

i == 1,2: (A8-2 )

That is, the real and imaginary parts of ~ are independent,
Gaussian, of zero mean, and common variance, 2EN ; and an identicalo
statement applies to q2. Thus, using a result of Rice (16), we may
write

pr [I~IJ
2

exp[ - ~J i = 1,2. (A8-3)
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That is, the lengths of the vectors ql and q2 in Figure A8-1 are
Rayleigh distributed. Now, we first assume that the path strength, a,
is known to the receiver. Then the vector 2aEejS in Figure A8-1 is of
fixed length~ Again invoking a result of Rice for the length of the
sum of a vector of fixed length and a vector whose length is Rayleigh
distributed(16), we obtain

(A8-4)

We may finally show, using (A6-~) and the assumption that
A = 0, that

(A8-5)

Since uncorrelated Gaussian variables are independent, we infer from
(A8-5) that ql and q2' and hence gl and g2' are independent. Then
we may write

00 00

= ~ pr [[gll /a ] dlgll 1 pr [Igzl /a 1d Igzi (AB-6)

o Ig11
Since, from (A8-1), g2.= q2' we may write pr [lg21/a] = pr[lg21 =I~I] .
Using (AB-3r, the I~ I - integration of (AB-6).becomes exactly

exp [- d:~J. Using this result with equation (AB-4) in th~

remaining Igll-integration, we have
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exp [_a~:]
P~(a) = 2EN

o.
(A8-7)

o

With the help of equation (A4-5) of Appendix IV, equation (A8-7)
reduces immediately to equation (4~30).

The marginal distribution, pr[a], of the path strength, obtained
by integrating equation (2.05) over e, is(16):

[
2: 2 ]pr[aJ = a2.exp _ a +~ 10 [a~].

o 2:0. 0

Substituting (4.30) and (A8-8) into (4.31), we have:

p~ =exp~a:l ] ra exp [~ ~~ (~2 + ~JJ 10 [:~ ] da

o

a io2.EAgain using (A4-5), and remembering that 'Y = - and ~ = -- ,
C1 No

we may obtai~ equation (4.32) directly from equation (A8-9).

(A8-8)

(A8-9)



- 97 -

REFERENCES

1. N. Wiener, Extrapolation, Interpolation, arid Smoothing of Stationary Time
Series, Wiley and Sons, Inc., New York, 1949.

2. C. E. Shannon and W. Weaver, The Mathematical Theory of Communication,
Univ. of Ill. Press, 1949.

3: C. E. Shannon, Proc. 1.R. E., 37, 10 (1949).

4. P. M. Woodward and 1. L. Davies, Proc. 1. E. E., Part III, 99, 37 (1952).

5. P. M. Woodward, Probability and Information Theory, with Applications to
Radar, McGraw-Hill Book Co., Inc., New York, 1953.

6. R. Price, "Statistical Theory Applied to Communication through Multipath
Disturbances, " Tech. Rpt. 266, Res. Lab. of Electronics (Tech. Rpt. 34,
Lincoln Lab.), M.LT., Sept. 3,1953.

7. R. Price, Trans. 1.R. E. -P'. G. 1. T., 1954 Symposium, Sept., 1954, p. 163.

8. R. Price, (a) IINotes on Ideal Receivers for Scatter Multipath, II Grp. Rpt. 34-
39, Lincoln Lab.,M.LT., May 12, 1955.

(b) "Error Probabilities for the Ideal Detection of Signals Per-
turbed by Scatter and Noise, " Grp. Rpt. 34-40, Lincoln Lab. ,
M.LT., Oct. 3,1955.

The essential results of these reports are to be presented in a projected
paper, "Optimum Detection of Bandpass, Gaussian Signals in White, Gaussian
Noise, with Application to Receiver Design for Scatter-Path Communication, "
to be submitted to Trans. 1. R ..E. -Po G. 1. T.

9. W. L. Root and T. S. Pitcher, Trans. 1.R.E. -P.G.1.T., Vol.IT-l, No.3, p.33.

10. C. E. Shannon and W. Weaver, Ope cit., p. 5

11. Ibid., p. 25

12. D. A. Huffman, Proc. I.R.E., 40, 1098 (1952).

13. R. W. Hamming, B. S. T . J., 29, 147 (1950) .

'14. P .. M. Woodward, Ope cit., Secs.2. 9, 4.9, 6. 1.

15. S. O. Rice, B. S. T. J., 23, 282 (1944) and 24, 46 (1945), or Selected Papers on
Noise and Stochastic Processes, N. Wax, ed., Dover Pub., Inc., New York,
1954, p. 133 et seq. ; Sec. 3. 7.

16. Ibid., Sec. 3.10.

17. D. Middleton, Quart. Appl. Math., ~' 445 (1948), Sec. 5.

18. F. Villars and V. F. Weisskopf, Phys. Rev., 94, 232 (1954).

19. J. A. Ratcliffe, Nature, 162, 9 (1948).



- 98 -

20. H. G. Booker, J. A. Ratcliffe, and D. H. Shinn, Phil. Trans., Royal Soc. of
London, 242, 579 (1950).

21. R. W. E. McNicol, Proc. LE.E., Part III, 96, 517 (1949).

22. R. A. Silverman and M. Balser, Phys. Rev., 96, 560 (1954).

23. K. Bullington, W. J. Inkster, and A. L. Durkee, Proc. I.R.E., 43, 1306 (1955).

24. W. Magnus and F. Oberhettinger, Special Functions of Mathematical Physics,
Chelsea Publishing Co., New York, 1949, pp. 26 and 35.

25. J. H. Van Vleck and D. Middleton, J. Appl. Phys., .!2., 940 (1946).

26. F. B. Hildebrand, Methods of Applied Mathematics, Prentice -Hall, Inc., New
York, 1952, Sec. 2. 6.

27. R. M. Fano, unpublished lecture notes, "Communication in the Presence of-
Noise," M.L T., 1951.

28. H. Cramer, Mathematical Methods of Statistics, Princeton Univ. Press, 1951,
Sec. 24. 4.

29. Ibid., Sec. 24.2.

30. Ibid., Equation (11.12.1).

31. P. Whittle, Hypothesis Testing in Time Series Analysis, Almquist and Wiksells
AB, Uppsala, Sweden, 1951.

32. G. A. Campbell and R. M. Foster, Fourier Integrals for Practical Applications,
D. Van Nostrand Co., Inc., New York, 1948, transform pair no. 727.

33. E. A. Guillemin, The Mathematics of Circuit Analysis, Wiley and Sons, New
York, Chap. VI, Art. 15.

34. C. W. Helstrom, Proc. I.R.E., 43, 1111 (1955).

35. W. Magnus and F. Oberhettinger, Ope cit~" p. 96.

36. H. Cramer, Ope cit., equation (15.10.1).

37. R. M. Fano,' "Communication in the Presence of Additive Gaussian Noise, II Com-
munication Theory, 1952 London Symposium on "Applications of Communication
Theory, Ii W. Jackson, ed., Butterworth Scientific Pub. , London, 1953, p. 169.

38. F. A. Muller, "Communication in the Presence of Additive Gaussian Noise, II. Tech.
Rpt. 244, Re s. Lab. of Electronics, M. I. "T., May 27, 1953.



- 99 -

BIOGRAPHICALNOTE

George Lewis Turin was born in New York City on

January 27, 1930. After having obtained his primary and
secondary educations in the public schools of that city, he
entered the Massachusetts Institute of Technology in 1947.

At M.1. T. he participated in the Cooperative Course in
Electrical Engineering with Philco Corporation, and was
awarded the S. B. and-S. M. degrees in Electrical Eng-

ineering in 1952. During the summer of 1952 he was an

M.1. T. Overseas Summer Fellow at Marconi's Wireless
Telegraph Company in England.

In the fall of 1952he became a Staff Member of Lincoln
Laboratory, M.1. T., in which position he remained for the
next two year s, engaged _inthe design and development of new
type s of communication systems.

From the fall of 1954 to the present he has been a Research
Assistant at the Department of Electrical Engineering, M. I. T. ,
on assignment to Lincoln Laboratory. During this period he
has completed his doctoral studie s. He has also during the

past two years done consulting work for the Boston firm of
Edgerton, Germeshausen and Grier.

He is a member of the Institute of Radio Engineers, and of

Eta Kappa Nuand Tau Beta Pi; and an associate member of mem-
ber of Sigma Xi.


	page1
	images
	image1
	image2


	page2
	images
	image1
	image2
	image3


	page3
	titles
	'() 
	., 

	images
	image1
	image2


	page4
	page5
	page6
	titles
	ii 
	9 
	63 


	page7
	page8
	titles
	~ (T) = g (T) e 0 

	images
	image1
	image2
	image3
	image4
	image5
	image6
	image7
	image8


	page9
	titles
	vii 
	n./o-. 
	3 
	49 
	48 
	12 
	7 

	tables
	table1


	page10
	page11
	page12
	titles
	-2- 
	~ 
	o 
	... 
	w_ 
	~:8 
	, .... 
	2 
	. 
	bD 
	lit 
	mE 
	--_ ..... '-----,....-- ------- ------------- 
	--------------------------~-- 
	... 
	w_ 
	.- 
	o 

	images
	image1
	image2
	image3
	image4
	image5
	image6
	image7
	image8
	image9
	image10
	image11

	tables
	table1
	table2


	page13
	page14
	page15
	page16
	page17
	titles
	- 7 - 
	"'''' ~ 


	page18
	titles
	I I /,,2 N 2 
	" 
	(1.03a) 
	(1. 04) 
	Il/J(T) I = I S x *(t) y(t-T) dt I 
	(1.05) 


	page19
	titles
	- 9 - 
	w 5 IWll2 dt = I l~kl2 


	page20
	page21
	titles
	= 
	~l !Yk12 

	images
	image1
	image2
	image3
	image4


	page22
	images
	image1
	image2


	page23
	titles
	YJ i (t) 

	images
	image1
	image2


	page24
	titles
	o 
	pr [a. , a.1 T.] = 
	L 
	L 
	= l 

	images
	image1
	image2
	image3


	page25
	titles
	T 

	images
	image1
	image2
	image3


	page26
	titles
	- 16 - 


	page27
	titles
	t(t) = ~(t) + 1l(t) 


	page28
	titles
	1 to ° + 
	(Z.13) 

	images
	image1
	image2


	page29
	titles
	pr [sf (Ti): ~ J 
	(2. 15) 
	L 
	TT 
	o 

	images
	image1
	image2
	image3


	page30
	tables
	table1
	table2


	page31
	titles
	1 --=--- 
	N 
	» 1 

	images
	image1
	image2


	page32
	titles
	1 
	f Ig(T) I 
	I~~T 

	images
	image1
	image2


	page33
	titles
	1 


	page34
	titles
	1 '" * 

	images
	image1


	page35
	images
	image1


	page36
	titles
	-2.6 .. - 
	(2. 24) 
	(2.25) 
	1 
	(2.26) 

	images
	image1
	image2
	image3
	image4


	page37
	titles
	(2. 28) 

	images
	image1
	image2


	page38
	titles
	- 28 - 
	-, 
	----------J 
	r-- ---- ---- 
	1_- 
	* 
	(2. 30) 


	page39
	titles
	o 
	_1_ ~ IN(f) l:!. 
	():: ~ 1 H (f) 12 

	images
	image1
	image2
	image3


	page40
	titles
	- 30 - 

	images
	image1
	image2
	image3


	page41
	page42
	page43
	page44
	titles
	Pr S S =----- 

	images
	image1
	image2


	page45
	titles
	+~ 0 th 

	images
	image1
	image2


	page46
	titles
	r -jog 

	images
	image1


	page47
	titles
	2<r~ 
	[ <r~lg .12 ] 
	exp -2N-~-[-I-+-2-lT N....,.t-:-m-~ 

	images
	image1
	image2


	page48
	titles
	exp 2N (1 + ~ . ) O[N (l + ~ . ) J 
	2 
	N 

	images
	image1


	page49
	images
	image1


	page50
	titles
	F . (x) 
	L 
	o 

	images
	image1
	image2


	page51
	titles
	B B 
	A A 

	images
	image1


	page52
	page53
	titles
	- 
	- 

	images
	image1
	image2

	tables
	table1


	page54
	page55
	images
	image1
	image2


	page56
	titles
	- 46 - 

	images
	image1
	image2
	image3
	image4
	image5
	image6
	image7


	page57
	titles
	.S 

	images
	image1
	image2
	image3
	image4


	page58
	titles
	o 
	Pe = pr[D<O] = 5 pr[D]dD 

	images
	image1
	image2


	page59
	titles
	*" 

	tables
	table1
	table2


	page60
	titles
	o 
	o 
	o 
	o 
	1 
	o 
	o 
	- 50 - 
	o 
	o 
	-1 
	o 
	o 
	o 
	o 
	-1 

	images
	image1
	image2


	page61
	titles
	. 2 
	{if 
	S 
	o 
	de 
	k6 =[lk~-1)/1Tk4] exp [- ks/k; J 

	images
	image1


	page62
	titles
	I 

	images
	image1
	image2
	image3
	image4
	image5


	page63
	titles
	P 
	2 0 

	tables
	table1


	page64
	titles
	-54- 
	o 

	images
	image1
	image2
	image3
	image4
	image5


	page65
	images
	image1
	image2


	page66
	titles
	,- 1 [~12 J 
	i 
	, I 

	images
	image1
	image2
	image3
	image4
	image5


	page67
	tables
	table1


	page68
	titles
	= 2 A = 
	B(kZ)i 
	o 
	A = 0 
	Nl 

	images
	image1
	image2
	image3
	image4

	tables
	table1


	page69
	titles
	D = 

	images
	image1
	image2


	page70
	titles
	A = O. 


	page71
	titles
	-61- 
	6 
	5 
	<...< {3y2 -= CO 
	..= 0 r-:::::p::===C:::===?==SEiiiiT~~::t:==~ 
	z 
	z 
	~ 
	...J 
	~ -0.6 1--I--.~-4__#_-__#-+--------4------lL-+- -+- , 
	o 
	:E 
	~ 
	~ ~ 
	~ ~ 
	o f3y2:0t ~ 
	o 2 3 4 
	2/y2 
	" 
	Fig.5-1 
	NEGATIVE PEAK 
	o 
	Fig.5-2 

	images
	image1
	image2
	image3


	page72
	page73
	page74
	titles
	- 64 - 


	page75
	page76
	titles
	" . 
	. J p 1 m 


	page77
	titles
	- 67 - 
	, . J m 1 m 
	+ 


	page78
	titles
	- 68 - 


	page79
	images
	image1


	page80
	titles
	(Al-7 ) 

	images
	image1
	image2
	image3


	page81
	titles
	-I 
	(A2.-1) 
	1 
	K =------ 
	r z.( t)x( t-"t. )dt = g(-r.) 

	images
	image1
	image2
	image3


	page82
	titles
	(A2-7) 
	+ J,. 
	2 

	images
	image1
	image2
	image3
	image4
	image5


	page83
	titles
	(A2-11) 
	pr (a.),(e.)/(~.),'" = K' a~ exp - ~ ~ ~ 2 ~ ~ 
	(A2-14) 

	images
	image1
	image2
	image3
	image4


	page84
	titles
	- 74 - 


	page85
	titles
	- 75 - 
	(A3-1) 
	(A3-3) 

	images
	image1
	image2


	page86
	titles
	• 

	images
	image1


	page87
	titles
	-co ~co (~-W) 
	'to.. d 

	images
	image1


	page88
	titles
	- 78 - 
	Eel r H (f) 2 .[1 _ ~x.(f)1 Z ] .- df 
	i IX(f)12df = K 

	images
	image1
	image2
	image3
	image4


	page89
	titles
	- 79 - 
	Iz 

	images
	image1


	page90
	page91
	titles
	[IT 
	(A4-1) 
	L 
	cD 
	(A4-1) becomes, usi~g -(A2-6): ' 
	(A4-3) 

	images
	image1
	image2


	page92
	titles
	- 82 - 
	exp [~t ] 
	(A4-5) 

	images
	image1
	image2
	image3
	image4


	page93
	titles
	- 83 - 
	(A5-1) 
	(A5-2 ) 
	(A5-3) 

	images
	image1
	image2

	tables
	table1
	table2


	page94
	titles
	- 84 - 

	images
	image1
	image2
	image3


	page95
	titles
	• 
	, (A5-10) 

	images
	image1
	image2
	image3


	page96
	images
	image1
	image2


	page97
	titles
	- 87 - 
	(A6-6) 
	"N 
	~i = ~ [~(t)~i(t) + ~(t)~i(t)] dt 
	(A6-8) 

	images
	image1


	page98
	titles
	- 88 - 
	2EN 

	images
	image1
	image2
	image3
	image4
	image5
	image6


	page99
	tables
	table1
	table2


	page100
	titles
	o 
	" 
	-l({3+1) 
	(A6-1.5) 
	(A6-l6) 

	images
	image1

	tables
	table1


	page101
	titles
	- 91 - 
	(A.7-1) 

	images
	image1
	image2
	image3
	image4
	image5
	image6
	image7


	page102
	titles
	- 92 - 
	(A7-5) 
	(A7-6) 

	images
	image1
	image2
	image3
	image4
	image5


	page103
	titles
	- 93 - 
	(A7-7) 
	[_ ~(z +1) ] 
	(A7-8) 

	images
	image1
	image2


	page104
	titles
	-;: ~ 
	~ ~ = 0 
	pr [I~IJ 
	exp[ - ~J 

	images
	image1
	image2


	page105
	titles
	- 95 - 
	o Ig11 

	images
	image1
	image2
	image3


	page106
	titles
	exp [_ a~: ] 
	(A8-7) 
	(A8-8) 

	images
	image1


	page107
	page108
	page109

