27 research outputs found

    EPIdemiology of Surgery-Associated Acute Kidney Injury (EPIS-AKI) : Study protocol for a multicentre, observational trial

    Get PDF
    More than 300 million surgical procedures are performed each year. Acute kidney injury (AKI) is a common complication after major surgery and is associated with adverse short-term and long-term outcomes. However, there is a large variation in the incidence of reported AKI rates. The establishment of an accurate epidemiology of surgery-associated AKI is important for healthcare policy, quality initiatives, clinical trials, as well as for improving guidelines. The objective of the Epidemiology of Surgery-associated Acute Kidney Injury (EPIS-AKI) trial is to prospectively evaluate the epidemiology of AKI after major surgery using the latest Kidney Disease: Improving Global Outcomes (KDIGO) consensus definition of AKI. EPIS-AKI is an international prospective, observational, multicentre cohort study including 10 000 patients undergoing major surgery who are subsequently admitted to the ICU or a similar high dependency unit. The primary endpoint is the incidence of AKI within 72 hours after surgery according to the KDIGO criteria. Secondary endpoints include use of renal replacement therapy (RRT), mortality during ICU and hospital stay, length of ICU and hospital stay and major adverse kidney events (combined endpoint consisting of persistent renal dysfunction, RRT and mortality) at day 90. Further, we will evaluate preoperative and intraoperative risk factors affecting the incidence of postoperative AKI. In an add-on analysis, we will assess urinary biomarkers for early detection of AKI. EPIS-AKI has been approved by the leading Ethics Committee of the Medical Council North Rhine-Westphalia, of the Westphalian Wilhelms-University Münster and the corresponding Ethics Committee at each participating site. Results will be disseminated widely and published in peer-reviewed journals, presented at conferences and used to design further AKI-related trials. Trial registration number NCT04165369

    International nosocomial infection control consortium (INICC) report, data summary of 36 countries, for 2004-2009

    Get PDF
    The results of a surveillance study conducted by the International Nosocomial Infection Control Consortium (INICC) from January 2004 through December 2009 in 422 intensive care units (ICUs) of 36 countries in Latin America, Asia, Africa, and Europe are reported. During the 6-year study period, using Centers for Disease Control and Prevention (CDC) National Healthcare Safety Network (NHSN; formerly the National Nosocomial Infection Surveillance system [NNIS]) definitions for device-associated health care-associated infections, we gathered prospective data from 313,008 patients hospitalized in the consortium's ICUs for an aggregate of 2,194,897 ICU bed-days. Despite the fact that the use of devices in the developing countries' ICUs was remarkably similar to that reported in US ICUs in the CDC's NHSN, rates of device-associated nosocomial infection were significantly higher in the ICUs of the INICC hospitals; the pooled rate of central line-associated bloodstream infection in the INICC ICUs of 6.8 per 1,000 central line-days was more than 3-fold higher than the 2.0 per 1,000 central line-days reported in comparable US ICUs. The overall rate of ventilator-associated pneumonia also was far higher (15.8 vs 3.3 per 1,000 ventilator-days), as was the rate of catheter-associated urinary tract infection (6.3 vs. 3.3 per 1,000 catheter-days). Notably, the frequencies of resistance of Pseudomonas aeruginosa isolates to imipenem (47.2% vs 23.0%), Klebsiella pneumoniae isolates to ceftazidime (76.3% vs 27.1%), Escherichia coli isolates to ceftazidime (66.7% vs 8.1%), Staphylococcus aureus isolates to methicillin (84.4% vs 56.8%), were also higher in the consortium's ICUs, and the crude unadjusted excess mortalities of device-related infections ranged from 7.3% (for catheter-associated urinary tract infection) to 15.2% (for ventilator-associated pneumonia). Copyright © 2012 by the Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved

    Chaotic gradient based optimizer for solving multidimensional unconstrained and constrained optimization problems

    No full text
    Gradient-based optimizer (GRAD) belongs to the recently developed population-based metaheuristic algorithms inspired by the development of Newton-type methods. Despite its new emergence, there are many successful applications of this optimizer in the existing literature; however, chaos integrated version of this algorithm has not been extensively studied yet. In his study, twenty-one different chaotic maps have been incorporated into the standard GRAD algorithm to maintain a reliable balance between exploration and exploitation mechanisms, which is not robustly constructed within the original algorithm. First ninety-nine thirty dimensional artificially generated optimization benchmark problems comprised of sixty-eight multimodal and thirty-one unimodal functions have been solved by these chaotic variants of the GRAD algorithm to determine the five best performing methods between them. Clear dominancy of the chaotic algorithms is clearly observed over the entire range of benchmark cases in terms of solution accuracy and robustness. Then, to validate the optimization capability of the chaos integrated GRAD algorithms, the best method among them is tested on fourteen constrained real world engineering problems, and its respective feasible results are benchmarked against those obtained from cutting edge metaheuristic optimizer. It is seen that the chaotic GRAD algorithm is able to effectively compete with other state-of-art algorithms on both solving unconstrained and constrained engineering problems. Moreover, it is observed that the Chebyshev chaotic map improved GRAD algorithm outperforms its contemporaries in both unconstrained and constrained cases. © 2023, The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature

    Global best-guided oppositional algorithm for solving multidimensional optimization problems

    No full text
    This paper presents an alternative optimization algorithm to the literature optimizers by introducing global best-guided oppositional-based learning method. The procedure at hand uses the active and recent manipulation schemes of oppositional learning procedure by applying some modifications to them. The first part of the algorithm deals with searching the optimum solution around the current best solution by means of the ensemble learning-based strategy through which unfeasible and semi-optimum solutions have been straightforwardly eliminated. The second part of the algorithm benefits the useful merits of the quasi-oppositional learning strategy to not only improve the solution diversity but also enhance the convergence speed of the whole algorithm. A set of 22 optimization benchmark functions have been solved and corresponding results have been compared with the outcomes of the well-known literature optimization algorithms. Then, a bunch of parameter estimation problem consisting of hard-to-solve real world applications has been analyzed by the proposed method. Following that, eight widely applied constrained benchmark problems along with well-designed 12 constrained test cases proposed in CEC 2006 session have been solved and evaluated in terms of statistical analysis. Finally, a heat exchanger design problem taken from literature study has been solved through the proposed algorithm and respective solutions have been benchmarked against the prevalent optimization algorithms. Comparison results show that optimization procedure dealt with in this study is capable of achieving the utmost performance in solving multidimensional optimization algorithms. © 2019, Springer-Verlag London Ltd., part of Springer Nature

    Design and economic investigation of shell and tube heat exchangers using Improved Intelligent Tuned Harmony Search algorithm

    No full text
    This study explores the thermal design of shell and tube heat exchangers by using Improved Intelligent Tuned Harmony Search (I-ITHS) algorithm. Intelligent Tuned Harmony Search (ITHS) is an upgraded version of harmony search algorithm which has an advantage of deciding intensification and diversification processes by applying proper pitch adjusting strategy. In this study, we aim to improve the search capacity of ITHS algorithm by utilizing chaotic sequences instead of uniformly distributed random numbers and applying alternative search strategies inspired by Artificial Bee Colony algorithm and Opposition Based Learning on promising areas (best solutions). Design variables including baffle spacing, shell diameter, tube outer diameter and number of tube passes are used to minimize total cost of heat exchanger that incorporates capital investment and the sum of discounted annual energy expenditures related to pumping and heat exchanger area. Results show that I-ITHS can be utilized in optimizing shell and tube heat exchangers. © 2014 Production and hosting by Elsevier B.V

    Whale optimization and sine–cosine optimization algorithms with cellular topology for parameter identification of chaotic systems and Schottky barrier diode models

    No full text
    2-s2.0-85089014518This research study aims to enhance the optimization accuracy of the two recently emerged metaheuristics of whale and sine–cosine optimizers by means of the balanced improvements in intensification and diversification phases of the algorithms provided by cellular automata (CA). Stagnation at the early phases of the iterations, which leads to entrapment in local optimum points in the search space, is one of the inherent drawbacks of the metaheuristic algorithms. As a favorable solution alternative to this problem, different types of cellular topologies are implemented into these two algorithms with a view to ameliorating their search mechanisms. Exploitation of the fertile areas in the search domain is maintained by the interaction between the topological neighbors, whereas the improved exploration is resulted from the smooth diffusion of the available population information among the structured neighbors. Numerical experiments have been carried out to assess the optimization performance of the proposed cellular-based algorithms. Optimization benchmark problems comprised of unimodal and multimodal test functions have been applied and numerical results have been compared with those found by some of the state-of-the-art literature optimizers including particle swarm optimization, differential evolution, artificial cooperative search and differential search. Cellular variants have been outperformed by the base algorithms for multimodal benchmark problems of Levy and Penalized1 functions. Then, the proposed cellular algorithms have been applied to two different parameter identification cases in order to test their efficiencies on real-world optimization problems. Extensive performance evaluations on different parameter optimization cases reveal that incorporating the CA concepts on these algorithms not only improves the optimization accuracy but also provides considerable robustness to acquired solutions. © 2020, Springer-Verlag GmbH Germany, part of Springer Nature

    Isolated giant intrathoracic meningocele associated with vertebral corpus deformity

    No full text
    Published reports of intrathoracic meningocele with vertebral corpus defects in the absence of neurofibromatosis are very rare. We report a 9-year-old male with intrathoracic meningocele. We believe that vertebral corpus defects may play a certain role in the etiology of intrathoracic meningocele. © 2004 Elsevier B.V. All rights reserved

    In-vitro evaluation and vaginal absorption of metronidazole suppositories in rabbits

    No full text
    PubMed ID: 14577974Vaginal suppository formulations of metronidazole were prepared using six different bases as Witepsol H15, Cremao, Ovucire WL2944, Ovucire WL3264, PEG 1500, PEG 6000. Three different dissolution methods were used to evaluate the in vitro drug release from the suppositories. The diffusion studies were performed through synthetic (cellophane) and natural membrane (rabbit vagina), but the drug did not show good permeation characteristics from natural membrane. Ovucire WL3264 suppositories of metronidazole labeled with 99mTc (Tecnetium-99m) were used for the vaginal absorption and biodistribution studies in the rabbits. Scintigraphic images were collected after vaginal administration of the labeled suppositories using SPECT gamma fitted with a low energy, high-resolution parallel hole collimator. The labeled drug showed high biodistribution in urine beside vaginal site. The results of this study suggested that the Ovucire WL3264 suppository of metronidazole prepared for vaginal infections could also be effective in the urinary infections.ECZ-2000/003We gratefully acknowledge the University of Ege Research Foundation for supporting this project, ECZ-2000/003.We would also like to thank Professor Dr Yusuf Duman from Department of Nuclear Medicine, Medical School, University of Ege. -
    corecore