87 research outputs found

    Evidence for elevated emissions from high-latitude wetlands contributing to high atmospheric CH4 concentration in the early Holocene

    Get PDF
    The major increase in atmospheric methane (CH4) concentration during the last glacial-interglacial transition provides a useful example for understanding the interactions and feedbacks among Earth\u27s climate, biosphere carbon cycling, and atmospheric chemistry. However, the causes of CH4 doubling during the last deglaciation are still uncertain and debated. Although the ice-core data consistently suggest a dominant contribution from northern high-latitude wetlands in the early Holocene, identifying the actual sources from the ground-based data has been elusive. Here we present data syntheses and a case study from Alaska to demonstrate the importance of northern wetlands in contributing to high atmospheric CH4concentration in the early Holocene. Our data indicate that new peatland formation as well as peat accumulation in northern high-latitude regions increased more than threefold in the early Holocene in response to climate warming and the availability of new habitat as a result of deglaciation. Furthermore, we show that marshes and wet fens that represent early stages of wetland succession were likely more widespread in the early Holocene. These wetlands are associated with high CH4 emissions due to high primary productivity and the presence of emergent plant species that facilitate CH4 transport to the atmosphere. We argue that early wetland succession and rapid peat accumulation and expansion (not simply initiation) contributed to high CH4 emissions from northern regions, potentially contributing to the sharp rise in atmospheric CH4 at the onset of the Holocene

    Structuring Life After Death: Plant Leachates Promote CO2 Uptake by Regulating Microbial Biofilm Interactions in a Northern Peatland Ecosystem

    Get PDF
    Shifts in plant functional groups associated with climate change have the potential to influence peatland carbon storage by altering the amount and composition of organic matter available to aquatic microbial biofilms. The goal of this study was to evaluate the potential for plant subsidies to regulate ecosystem carbon flux (CO2) by governing the relative proportion of primary producers (microalgae) and heterotrophic decomposers (heterotrophic bacteria) during aquatic biofilm development in an Alaskan fen. We evaluated biofilm composition and CO2 flux inside mesocosms with and without nutrients (both nitrogen and phosphorus), organic carbon (glucose), and leachates from common peatland plants (moss, sedge, shrub, horsetail). Experimental mesocosms were exposed to either natural sunlight or placed under a dark canopy to evaluate the response of decomposers to nutrients and carbon subsidies with and without algae, respectively. Algae were limited by inorganic nutrients and heterotrophic bacteria were limited by organic carbon. The quality of organic matter varied widely among plants and leachate nutrient content, more so than carbon quality, influenced biofilm composition. By alleviating nutrient limitation of algae, plant leachates shifted the biofilm community toward autotrophy in the light-transparent treatments, resulting in a significant reduction in CO2 emissions compared to the control. Without the counterbalance from algal photosynthesis, a heterotrophic biofilm significantly enhanced CO2 emissions in the presence of plant leachates in the dark. These results show that plants not only promote carbon uptake directly through photosynthesis, but also indirectly through a surrogate, the phototrophic microbes

    Focus on changing fire regimes: interactions with climate, ecosystems, and society

    Get PDF
    Fire is a complex Earth system phenomenon that fundamentally affects vegetation distributions, biogeochemical cycling, climate, and human society across most of Earth’s land surface. Fire regimes are currently changing due to multiple interacting global change drivers, most notably climate change, land use, and direct human influences via ignition and suppression. It is therefore critical to better understand the drivers, patterns, and impacts of these changing fire regimes now and continuing into the future. Our review contributes to this focus issue by synthesizing results from 27 studies covering a broad range of topics. Studies are categorized into (i) Understanding contemporary fire patterns, drivers, and effects; (ii) Human influences on fire regimes; (iii) Changes in historical fire regimes; (iv) Future projections; (v) Novel techniques; and (vi) Reviews. We conclude with a discussion on progress made, major remaining research challenges, and recommended directions

    Assessing Boreal Peat Fire Severity and Vulnerability of Peatlands to Early Season Wildland Fire

    Get PDF
    Globally peatlands store large amounts of carbon belowground with 80% distributed in boreal regions of the northern hemisphere. Climate warming and drying of the boreal region has been documented as affecting fire regimes, with increased fire frequency, severity and extent. While much research is dedicated to assessing changes in boreal uplands, few research efforts are focused on the vulnerability of boreal peatlands to wildfire. In this case study, an integration of field data collection, land cover mapping of peatland types and Landsat-based fire severity mapping was conducted for four early season (May to mid-June) wildfires where peatlands are abundant in northeastern Alberta Canada. The goal was to better understand if peatlands burn more or less preferentially than uplands in fires and how severely the organic soil layers (peat) of different peatland ecotypes burn. The focus was on early season wildfires because they dominated the research area in the decade of study. To do this, a novel Landsat-5 metric was developed to retrieve fire severity of the organic surface layer. Spatial comparisons and statistical analysis showed that proportionally bogs are more likely to burn in early season Alberta wildfires than other ecosystem types, even fire-prone upland conifer. Although for a small sample, we found that when fire weather conditions for the duff layers are severe, the fens of this study appear to become more susceptible to burning. In addition, overall bogs experienced greater severity of burn to the peat layers than fens. Due to the small sample size of peat loss from fire in uplands and limited geographic area of this case study, we were unable to assess if bogs are burning more severely than uplands. Further analysis and Landsat algorithm development for organic soil fire severity in peatlands and uplands are needed to more fully understand trends in belowground consumption for wildfires of all seasons and boreal ecotypes

    Characterizing boreal peatland plant composition and species diversity with hyperspectral remote sensing

    Get PDF
    Peatlands, which account for approximately 15% of land surface across the arctic and boreal regions of the globe, are experiencing a range of ecological impacts as a result of climate change. Factors that include altered hydrology resulting from drought and permafrost thaw, rising temperatures, and elevated levels of atmospheric carbon dioxide have been shown to cause plant community compositional changes. Shifts in plant composition affect the productivity, species diversity, and carbon cycling of peatlands. We used hyperspectral remote sensing to characterize the response of boreal peatland plant composition and species diversity to warming, hydrologic change, and elevated CO2. Hyperspectral remote sensing techniques offer the ability to complete landscape-scale analyses of ecological responses to climate disturbance when paired with plot-level measurements that link ecosystem biophysical properties with spectral reflectance signatures. Working within two large ecosystem manipulation experiments, we examined climate controls on composition and diversity in two types of common boreal peatlands: a nutrient rich fen located at the Alaska Peatland Experiment (APEX) in central Alaska, and an ombrotrophic bog located in northern Minnesota at the Spruce and Peatland Responses Under Changing Environments (SPRUCE) experiment. We found a strong effect of plant functional cover on spectral reflectance characteristics. We also found a positive relationship between species diversity and spectral variation at the APEX field site, which is consistent with other recently published findings. Based on the results of our field study, we performed a supervised land cover classification analysis on an aerial hyperspectral dataset to map peatland plant functional types (PFTs) across an area encompassing a range of different plant communities. Our results underscore recent advances in the application of remote sensing measurements to ecological research, particularly in far northern ecosystems

    Patterns of Ecosystem Structure and Wildfire Carbon Combustion Across Six Ecoregions of the North American Boreal Forest

    Get PDF
    Increases in fire frequency, extent, and severity are expected to strongly impact the structure and function of boreal forest ecosystems. An important function of the boreal forest is its ability to sequester and store carbon (C). Increasing disturbance from wildfires, emitting large amounts of C to the atmosphere, may create a positive feedback to climate warming. Variation in ecosystem structure and function throughout the boreal forest is important for predicting the effects of climate warming and changing fire regimes on C dynamics. In this study, we compiled data on soil characteristics, stand structure, pre-fire C pools, C loss from fire, and the potential drivers of these C metrics from 527 sites distributed across six ecoregions of North America’s western boreal forests. We assessed structural and functional differences between these fire-prone ecoregions using data from 417 recently burned sites (2004–2015) and estimated ecoregion-specific relationships between soil characteristics and depth from 167 of these sites plus an additional 110 sites (27 burned, 83 unburned). We found that northern boreal ecoregions were generally older, stored and emitted proportionally more belowground than aboveground C, and exhibited lower rates of C accumulation over time than southern ecoregions. We present ecoregion-specific estimates of depth-wise soil characteristics that are important for predicting C combustion from fire. As climate continues to warm and disturbance from wildfires increases, the C dynamics of these fire-prone ecoregions are likely to change with significant implications for the global C cycle and its feedbacks to climate change

    Lowering water table reduces carbon sink strength and carbon stocks in northern peatlands

    Get PDF
    Peatlands at high latitudes have accumulated \u3e400 Pg carbon (C) because saturated soil and cold temperatures suppress C decomposition. This substantial amount of C in Arctic and Boreal peatlands is potentially subject to increased decomposition if the water table (WT) decreases due to climate change, including permafrost thaw-related drying. Here, we optimize a version of the Organizing Carbon and Hydrology In Dynamic Ecosystems model (ORCHIDEE-PCH4) using site-specific observations to investigate changes in CO and CH fluxes as well as C stock responses to an experimentally manipulated decrease of WT at six northern peatlands. The unmanipulated control peatlands, with the WT (seasonal max up to 45 cm) below the surface, currently act as C sinks in most years (58 ± 34 g C m year ; including 6 ± 7 g C-CH m year emission). We found, however, that lowering the WT by 10 cm reduced the CO sink by 13 ± 15 g C m year and decreased CH emission by 4 ± 4 g CH m year , thus accumulating less C over 100 years (0.2 ± 0.2 kg C m ). Yet, the reduced emission of CH , which has a larger greenhouse warming potential, resulted in a net decrease in greenhouse gas balance by 310 ± 360 g CO m year . Peatlands with the initial WT close to the soil surface were more vulnerable to C loss: Non-permafrost peatlands lost \u3e2 kg C m over 100 years when WT is lowered by 50 cm, while permafrost peatlands temporally switched from C sinks to sources. These results highlight that reductions in C storage capacity in response to drying of northern peatlands are offset in part by reduced CH emissions, thus slightly reducing the positive carbon climate feedbacks of peatlands under a warmer and drier future climate scenario

    Model comparisons for estimating carbon emissions from North American wildland fire

    Get PDF
    Research activities focused on estimating the direct emissions of carbon from wildland fires across North America are reviewed as part of the North American Carbon Program disturbance synthesis. A comparison of methods to estimate the loss of carbon from the terrestrial biosphere to the atmosphere from wildland fires is presented. Published studies on emissions from recent and historic time periods and five specific cases are summarized, and new emissions estimates are made using contemporary methods for a set of specific fire events. Results from as many as six terrestrial models are compared. We find that methods generally produce similar results within each case, but estimates vary based on site location, vegetation (fuel) type, and fire weather. Area normalized emissions range from 0.23 kg C m−2 for shrubland sites in southern California/NW Mexico to as high as 6.0 kg C m−2 in northern conifer forests. Total emissions range from 0.23 to 1.6 Tg C for a set of 2003 fires in chaparral-dominated landscapes of California to 3.9 to 6.2 Tg C in the dense conifer forests of western Oregon. While the results from models do not always agree, variations can be attributed to differences in model assumptions and methods, including the treatment of canopy consumption and methods to account for changes in fuel moisture, one of the main drivers of variability in fire emissions. From our review and synthesis, we identify key uncertainties and areas of improvement for understanding the magnitude and spatial-temporal patterns of pyrogenic carbon emissions across North America
    • …
    corecore