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Abstract: Peatlands, which account for approximately 15% of land surface across the arctic and boreal
regions of the globe, are experiencing a range of ecological impacts as a result of climate change. Factors
that include altered hydrology resulting from drought and permafrost thaw, rising temperatures,
and elevated levels of atmospheric carbon dioxide have been shown to cause plant community
compositional changes. Shifts in plant composition affect the productivity, species diversity, and
carbon cycling of peatlands. We used hyperspectral remote sensing to characterize the response of
boreal peatland plant composition and species diversity to warming, hydrologic change, and elevated
CO2. Hyperspectral remote sensing techniques offer the ability to complete landscape-scale analyses
of ecological responses to climate disturbance when paired with plot-level measurements that link
ecosystem biophysical properties with spectral reflectance signatures. Working within two large
ecosystem manipulation experiments, we examined climate controls on composition and diversity in
two types of common boreal peatlands: a nutrient rich fen located at the Alaska Peatland Experiment
(APEX) in central Alaska, and an ombrotrophic bog located in northern Minnesota at the Spruce and
Peatland Responses Under Changing Environments (SPRUCE) experiment. We found a strong effect
of plant functional cover on spectral reflectance characteristics. We also found a positive relationship
between species diversity and spectral variation at the APEX field site, which is consistent with other
recently published findings. Based on the results of our field study, we performed a supervised land
cover classification analysis on an aerial hyperspectral dataset to map peatland plant functional types
(PFTs) across an area encompassing a range of different plant communities. Our results underscore
recent advances in the application of remote sensing measurements to ecological research, particularly
in far northern ecosystems.
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1. Introduction

The far northern regions of the globe are warming at twice the global average, resulting in
significant effects on the vegetation composition of arctic tundra and boreal ecosystems. Prominent
among the changes to plant communities include the pan-arctic northward expansion of shrubs into
tundra, and the spread of wetland vegetation as a result of permafrost thaw and ground subsidence [1–4].
Boreal forest ecosystems are also shifting from dominance by conifers to deciduous species as a result
of increased fire prevalence [5]. The relationship between climate and plant community composition
has important implications for biogeochemical cycles. For example, research indicates that elevated
temperatures in arctic environments increase the rate of nitrogen mineralization, promoting the
encroachment of woody plants into the tundra [6]. Increased shrub cover leads to an increase in the
rate of carbon uptake, but with uncertain consequences for the overall arctic carbon cycle [4,7,8]. Shifts
in arctic and boreal plant community composition and biogeochemical function can have significant
impacts on wildlife [9,10] and the livelihoods of local communities [11,12]. Despite these wide-ranging
impacts, resource and logistical challenges present an obstacle to the study of remote ecosystems.
These challenges make the examination of factors such as plant community compositional change
difficult. Indeed, given the extent and remoteness of northern ecosystems, remote sensing approaches
to assessing vegetation change are necessary for understanding the ecological effects of climate change
over large spatial scales.

Peatlands cover approximately 15% of land cover in the northern hemisphere and factor
significantly in the global carbon cycle [13–15]. Peatlands are highly heterogeneous ecosystems
characterized by thick organic soils and dominated by a variety of plant functional types (PFTs)
depending on landscape position and hydrology [16,17]. PFTs refer to the physiological, morphological,
structural, and chemical attributes that determine how plants allocate resources, take up carbon, and
reproduce themselves [18,19]. In this study, we use the PFT framework as a trait-based method of
vascular plant-species classification based on shared structure and function [18]. Changes in mean
annual temperature and hydrologic conditions in peatlands can lead to shifts in the composition of
PFTs, ultimately affecting ecosystem productivity [20–23]. Prior research in peatlands has indicated
that warming and drying affect PFT composition by promoting dominance by woody shrubs [23–25].
Conversely, raised water tables from increased precipitation or permafrost thaw lead to an increase
in graminoid species such as sedges [20–22]. Lowered water tables and increased shrub dominance
have been associated with decreased annual gross primary productivity (GPP) relative to elevated
water tables [22,26]. Studies have also demonstrated a link between the graminoid cover and methane
emissions rates from wetland ecosystems [27,28]. Given their importance in regulating ecosystem
function, mapping the distribution of PFTs could be an important element of predicting ecosystem
responses to environmental change [29,30].

High spatial resolution hyperspectral imagery is emerging as a promising method for conducting
remote assessments of PFT distribution [19,31]. Hyperspectral data leverages a far greater number
of spectral bands as compared to multi-spectral data, ultimately allowing for the differentiation
of vegetation characteristics with a high degree of fidelity [32]. For example, prior research has
demonstrated that variation in the structural, physiological, and chemical characteristics of particular
species or PFTs interact uniquely with different regions of the electromagnetic spectrum, allowing
them to be distinguished from other species [33,34]. Species-specific properties that affect reflectance
include unique leaf pigments such as chlorophyll and anthocyanin [35–38], leaf nitrogen content [39,40],
and leaf water content [41]. Recent research has shown that phylogenetic distance both within and
among species is correlated with spectral dissimilarity, a relationship that scales from leaf-level to
plot-level canopy observations [42] (Schweiger et al. 2018). Leveraging this type of information could
allow for species to be mapped over large areas through classification analysis of hyperspectral data,
improving our ability to track changes in species’ distributions and diversity across broad spatial
extents. Although mapping PFTs rather than individual species may not allow for accurate estimates of
species diversity, it still affords valuable information regarding the structure and function of ecosystems
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as a whole [29]. The use of hyperspectral remote sensing as a tool for mapping PFTs could provide
ecologists with the ability to track ecosystem responses to climate change [43]. Furthermore, these
types of analyses could ultimately help inform management strategies and environmental policy
approaches focused on ecosystem conservation and management in the face of climate change.

In addition to tracking compositional changes using remote sensing, a number of approaches to
characterizing species and functional diversity using hyperspectral methods have also been investigated.
In low diversity environments such as arctic and boreal ecosystems, the reduction of species richness
may have amplified effects on ecosystem productivity due to low functional redundancy in plant
types [44–47]. For example, peatland studies have found a loss of species in arctic systems in response
to the warming effects of carbon cycling rates [45,48]. Thus, tracking changes in the vascular functional
diversity of boreal peatlands is important for understanding the potential impacts of climate change on
the function of these ecosystems [19]. Recent research using hyperspectral methods has linked spectral
variation among pixels with species diversity by treating a stack of pixels as a reflectance signature that
captures the optical characteristics of vegetation across hundreds of spectral bands [49,50]. Remote
sensing estimation of diversity has previously been accomplished by linking spectral heterogeneity
among pixels with species richness, a method based on the spectral variation hypothesis that unique
species will present with strongly differentiated spectral properties [42,51–54]. Several different
statistical approaches have been used in the calculation of spectral heterogeneity. A simple method of
estimating spectral heterogeneity from a multi- or hyperspectral dataset is comparing the coefficient
of variation of multiple measurements [55–58]. Another approach is calculating Euclidian distances
among different scans or pixels derived from multivariate eigenvector methods such as principal
component analysis [52]. The further a pixel lands from the centroid of the data, the greater the spectral
heterogeneity of that pixel [51,52]. This approach has been correlated with alpha diversity metrics that
account for both species richness and evenness, such as the Shannon index, as well as with metrics such
as functional diversity or the number of different plant types present in a pixel [42,59]. Together, these
studies indicate the ability of multiple different remote sensing approaches to characterize the ecological
diversity of a landscape. Ultimately, remotely sensed estimates of diversity are integral to mapping
essential biodiversity variables (EBVs) – structural and functional characteristics of ecosystems that
predict biodiversity levels at a global scale [60–62].

The objective of this research was to assess the ability of remote sensing approaches for
characterizing and tracking changes in the plant communities of peatland ecosystems in response to
global change drivers. We collected the vegetation and hyperspectral data at two different peatland
ecosystems characteristic of boreal and arctic regions across the northern hemisphere. Both sites are
located within large-scale ecosystem manipulation experiments examining the effects of a suite of
climate change drivers on peatland ecosystems. We analyzed our data to determine which elements
of vascular plant functional composition and structure influence the reflectance spectra. We also
examined relationships between plot-level species diversity and spectral variation using multiple
methodological approaches. Predicated on the relationships that we demonstrated between near-earth
spectral reflectance and plant functional cover, we leveraged aerial hyperspectral imagery to map the
distribution of PFTs across a boreal peatland in interior Alaska, USA.

2. Methods

2.1. Study Sites

We collected data at two sites representing typical northern boreal and arctic peatland ecosystems.
The first site was at the Alaska Peatland Experiment (APEX) at the Bonanza Creek Long Term Ecological
Research Station, located 30 miles west of Fairbanks, Alaska (64.82◦N, 147.87◦W) (Figure 1). The site is
located in a sedge- and shrub-dominated rich fen on the floodplain of the Tanana River. APEX was
initiated in 2005 as a long-term manipulation to study the impact of altered hydrology on peatland
ecology and biogeochemistry. APEX consists of three water table manipulation treatments: a raised,
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a lowered, and a control treatment, each 120 m2 in size (Figure 2, left panel). The lowered treatment
plot is drained by a trench that borders the plot. Water from the trench is then pumped into the raised
water table treatment. The water table in the control plot is not manipulated. We performed field data
collection within the APEX water table manipulation treatment plots.

Remote Sens. 2018, 10, x FOR PEER REVIEW  5 of 25 

 

 

Figure 1. Location of the Alaska Peatland Experiment (APEX)  and Spruce and Peatland Responses 
Under Changing Environments (SPRUCE) peatland field sites. APEX is located in central Alaska. 
SPRUCE is located in northern Minnesota. 

 
Figure 2. (Left) Aerial image of APEX water table manipulation treatments and the surrounding area 
(photo credit: Evan Schjins). (Right) Aerial image of SPRUCE experimental chambers (photo credit: 
US Department of Energy, Oak Ridge National Laboratory). 

2.2. Data Collection 

2.2.1. Vegetation Cover Sampling 

Species and PFT cover were measured differently at the two study sites owing to differences in 
their respective data collection protocols (Table 1). In particular, non-vascular plants at APEX (which 
accounted for less than 10% of total cover) were recorded where present, whereas, at SPRUCE, 
mosses carpeted the soil surface and were therefore considered to have 100% cover across the site 

Figure 1. Location of the Alaska Peatland Experiment (APEX) and Spruce and Peatland Responses
Under Changing Environments (SPRUCE) peatland field sites. APEX is located in central Alaska.
SPRUCE is located in northern Minnesota.

Remote Sens. 2018, 10, x FOR PEER REVIEW  5 of 25 

 

 

Figure 1. Location of the Alaska Peatland Experiment (APEX)  and Spruce and Peatland Responses 
Under Changing Environments (SPRUCE) peatland field sites. APEX is located in central Alaska. 
SPRUCE is located in northern Minnesota. 

 
Figure 2. (Left) Aerial image of APEX water table manipulation treatments and the surrounding area 
(photo credit: Evan Schjins). (Right) Aerial image of SPRUCE experimental chambers (photo credit: 
US Department of Energy, Oak Ridge National Laboratory). 

2.2. Data Collection 

2.2.1. Vegetation Cover Sampling 

Species and PFT cover were measured differently at the two study sites owing to differences in 
their respective data collection protocols (Table 1). In particular, non-vascular plants at APEX (which 
accounted for less than 10% of total cover) were recorded where present, whereas, at SPRUCE, 
mosses carpeted the soil surface and were therefore considered to have 100% cover across the site 
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The second study site was at the Spruce and Peatland Response Under Changing Environments
(SPRUCE) project located at the Marcell Experimental Forest in northern Minnesota (47.30◦N, 93.29◦W)
(Figure 1). SPRUCE was initiated in 2014 as a climate change experiment to explore the effects
of increased temperatures and elevated CO2 levels on ecological and biogeochemical processes in
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peatlands at the southern edge of the boreal region (Figure 2, right panel). The experiment is located
within an ombrotophic bog dominated by Sphagnum mosses and black spruce (Picea mariana) with an
understory of ericaceous shrubs, graminoids, and forbs. The SPRUCE experiment is a regression-based
model in which ecological changes are measured in response to a broad range of temperatures [63].
Temperatures and CO2 levels are manipulated in 10 chambered treatment plots (Figure 2, right panel).
An additional three unenclosed control plots were also tracked in this experiment. The chambers
consist of octagonal enclosures 12.8 m in diameter and 7 m tall. The enclosures penetrate completely
through the peat soils down to mineral material below. Peat soils average 2.5 m in depth across the
site. Ambient temperatures and CO2 levels are maintained in one control chamber while another
control chamber has ambient temperatures and elevated CO2. The remaining eight treatment chambers
are maintained at +2.25, +4.5 +6.75, and +9 ◦C above ambient temperatures to simulate a range of
possible warmer climate scenarios. Carbon dioxide levels are maintained at ambient levels in half of
the temperature treatment chambers and elevated to between 800 and 900 parts per million in the other
half of the chambers. Each chamber, as well as the unchambered control enclosures, contain three 2-m2

vegetation plots, where sampling was conducted for this experiment.

2.2. Data Collection

2.2.1. Vegetation Cover Sampling

Species and PFT cover were measured differently at the two study sites owing to differences in
their respective data collection protocols (Table 1). In particular, non-vascular plants at APEX (which
accounted for less than 10% of total cover) were recorded where present, whereas, at SPRUCE, mosses
carpeted the soil surface and were therefore considered to have 100% cover across the site and were not
included in the sampling protocol. At APEX, species cover was recorded using a point bar vegetation
survey method [64]. Species were recorded along two perpendicular transects positioned across a
series of replicate plots in each treatment. A metal frame was positioned above the canopy 1 m above
the surface of the peat. A laser pointer was inserted into 10 evenly spaced holes in the metal frame
along the transect. Species and height above the ground were recorded for all interceptions of the laser
beam. This was repeated for each “hit” from the canopy to the surface of the peat. If the target was not
photosynthetic it was recorded as either “standing dead”, indicating that it was non-photosynthetic
biomass but still standing, or as “litter”, indicating it was part of the thatch forming at the surface of
the peat. For the lowered and raised treatments, four replicate plots were sampled, and in the control
treatment five replicates were sampled. Each species was categorized by PFT, and percent cover for
each type was calculated based on the percentage of hits of each PFT relative to the entire sample
(see Table 2 for species list). In addition, we calculated the leaf area index (LAI) for each point along
each transect as the number of living layers of vegetation present between the canopy and the soil
surface [25].

Table 1. Description of two study sites, data types, and differing data collection methods between sites.

APEX SPRUCE

Peatland type Rich fen Ombrotrophic bog

Location Alaska, USA Minnesota, USA

Experimental design
Water table manipulation with

120 m2 control, lowered and raised
treatments

Regression-based factorial
between increasing temperature

and CO2 level

Vegetation sampling Point bar laser survey method 2 m2 sampling frame method

Spectral reflectance ASD Fieldspec Pro Unispec DC
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Table 2. List of vascular plant species present at both study sites and plant functional type groupings
used in analysis.

SPRUCE APEX

PFT Species PFT Species

Forb Drosera rotundifolia Equisetum Equisetum fluviatile
Forb Maianthemum trifolium Forb Galium trifidum

Graminoid Carex magellanica Forb Potamogeton gramineus
Graminoid Carex oligosperma Graminoid Calamagrostis canadensis
Graminoid Carex trisperma Graminoid Carex loliacea
Graminoid Eriophorum vaginatum Graminoid Carex utriculata
Graminoid Eriophorum virginicum Moss Sphagnum spp.

Shrub Andromeda polifolia Shrub Potentilla palustris
Shrub Chamaedaphne calyculata
Shrub Kalmia polifolia

Shrub Rhododendron
groenlandicum

Shrub Vaccinium angustifolium
Shrub Vaccinium oxycoccos

Vegetation cover at SPRUCE was sampled in mid-July across the range of temperature and carbon
dioxide treatments. Three 2-m2 plots were sampled in each of the 13 chambers for a total of 33 plots in
the final analysis. Each plot was sampled using a 1- x 2-m frame that was set onto PVC pipes installed
in the experiment to facilitate repeated data collection in the exact same area. The frame was divided
into 50 cells 20 x 20 cm in size. The presence of all species was recorded within each cell of the grid,
and species were later grouped into PFTs (Table 2). If a species or PFT was present in half of the cells it
was considered to occupy 50% of the plot. Our sampling method at SPRUCE did not allow for the
calculation of the LAI.

2.2.2. Spectral Sampling

To link spectral reflectance with functional composition and species diversity, sampling of spectral
reflectance was performed at APEX and SPRUCE in the same plots where vegetation cover data
were collected. Spectral reflectance measurements were taken at APEX using an Analytical Spectral
Devices Fieldspec Pro that measured reflectance in 1-nm bandwidths between 300 and 2500 nm
(Figure 3). Data were collected during peak growing season on 29 June 2016. Scans were performed
during a 1-h window on each side of solar noon, which occurred at approximately 12:30 p.m. local
time. The sun at the time of data collection was at an azimuth angle of approximately 151◦ east
of north. Three scans were performed at each plot at the same location to acquire a local average.
The instrument was positioned 1 m above the peat surface, and captured a field of view of 44 cm in
diameter (Equation (1)) [65].

GFOV = 2 ∗ height ∗ tan
(25◦)

2
(1)

Data were processed such that water and atmospheric absorption bands that had a relative
reflectance of greater than one or less than zero were automatically excluded, as well as areas that
exhibited noise from the instrument. This resulted in three regions of the electromagnetic spectrum
being included in the analysis (Figure 3). Thirteen plots were sampled for vegetation and spectral
reflectance among the three APEX water table manipulation treatments: five plots in the control
treatment and four plots each of the lowered and raised plots.
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Spectral data were collected at SPRUCE on 22 September 2016 under clear sky conditions
beginning at 1:00 p.m. local time. The sun at the time of data collection was at an azimuth angle of
178◦ east. Although it was past peak growing season, senescence had only just begun at the site, and
experimentally warmed plots were still near peak growing conditions. Data collection was performed
using a PP Systems UniSpec-DC spectroradiometer that detected incoming and reflected solar radiation
in 3–4 nm bandwidths between 310 and 1100 nm (Figure 3). Three scans were performed above each
vegetation plot in the same sampling location to acquire a local average. Details on data collection and
processing are provided in McPartland et al. 2018 [25]. Reflectance was calculated for the average of
the three scans following the methods of Harris et al. (2014) [16] and Wang et al. (2016 & 2018) [49,50].
Bands at the beginning and end of the spectrum were eliminated due to noise, resulting in a data range
of 400–1000 nm used in the analysis (Figure 3). Data for SPRUCE chamber number 4 (+4.5 ◦C, elevated
CO2) were also excluded because reflectance data for that plot presented as a significant outlier, with
values that were far outside of the typical reflectance distribution collected at the other plots. This was
likely due to changing sky conditions between the time that the white reference scan was taken, and
the time of measurement.

2.2.3. Aerial Hyperspectral Data Collection

We used a hyperspectral dataset collected in July of 2014 at the Bonanza Creek Long Term
Ecological Research Station, where the APEX field site is located. (Figure 2, right panel). The aerial
dataset included the APEX study site and surrounding peatland ecosystems (Figure 4). The aerial
image encompassed a variety of peatland cover types including black spruce and tamarack bogs, sedge
meadows, tussock grasslands, and birch and willow shrub communities. Airborne hyperspectral data
were collected by the remote sensing company SpecTir. The instrument used in the data collection
was a ProSpecTir VNIR SWIR dual sensor push broom imaging spectrometer that collected data at
360 channels from approximately 400 to 2450 nm at a spectral resolution of approximately 2.9 nm in
the visible and near-infrared, and 8.5 nm in the short-wave infrared portions of the electromagnetic
spectrum. The imagery was collected approximately 200 m above ground surface, resulting in a
spatial resolution of 1 m2 [66]. The study area is approximately 2 km2 in size. Data were processed
using the Spectral Angle Mapper algorithm in the Python-based Spectral Classification Plug-in [67].
Ground control was performed by SpecTir and participants in this study. More detailed information
on the geolocation and post-processing of the aerial hyperspectral data is provided in Anderson et al.
(in review) [68].
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2.3. Data Analysis

2.3.1. Analysis of Vegetation Composition and Species Diversity

For both sites, we calculated the percent cover of each PFT as a fraction of the total observations
made at the plot level. The total number of plots included in our analysis was 13 across the three
treatments at APEX, and 33 plots across 13 chambers at SPRUCE. At APEX, the effect of water table
treatment on PFT cover was analyzed using a one-way ANOVA with a post-hoc pairwise means
comparison to determine whether significant differences existed among treatments. At SPRUCE, we
used a linear mixed effects modeling framework to evaluate the response of PFT cover to warming
and elevated CO2. Temperature was added to the model as a continuous variable, and CO2 level was
included as a factor. We included treatment chamber in the model as a random effect and evaluated
model fit using the Akaike information criterion, as well as both marginal and conditional R2, which
describe the variance explained by the fixed effects and full model, respectively [69]. Linear mixed
effects modeling was done using the lme4 package in R.

We calculated species diversity using the Shannon diversity index which incorporates both species
richness and evenness into a single measure of alpha diversity:

H′ = −
s∑

i=1

pi log(pi) (2)

In this equation, Shannon diversity (H’) is calculated at the plot-level in which pi represents
the proportion of the population represented by species i [70]. Shannon diversity was calculated for
each plot using the R Vegan package for community ecology [71]. We examined whether significant
differences in species diversity among plots existed using a one-way ANOVA with a post-hoc pairwise
means comparison at APEX, and linear mixed effects modeling at SPRUCE. We assessed significance
based on an alpha level of 0.05 in the ANOVA, and evaluated model coefficients in the linear mixed
effects model.

2.3.2. Spectral Data Analysis

For both sites, we performed principal component analyses (PCA) on the full reflectance spectra
to determine which PFTs contributed most strongly to variation among spectral scans (Figures S1
and S2) [72,73]. This analysis reduced the dimensionality of the full dataset while preserving variation
among plots within each experiment [74,75]. We were then able to determine the strength of the
relationship between spectral variation and PFT cover. We performed the analyses using the R vegan
package [71], and used permutation tests to determine the significance of different cover types on the
spectral PCA results. This modeled the relationship between the PCA axes of the spectral data and
PFT cover as a linear relationship. By this method, significance values are assigned by automatically
comparing the sample data with a randomly permuted dataset. We considered different PFTs to be
significant drivers of spectral variation at a p-value of less than or equal to 0.05.

We also examined the relationship between Shannon diversity and spectral variation through
several measures of community and spectral heterogeneity following similar methods to those used by
Wang et al. (2016) [49], who found a positive relationship between plot-level plant species diversity
and the coefficient of variation of the associated spectral scans. Based on their findings, we predicted
that greater coefficients of variation calculated for our average per-plot spectra would correlate with
higher Shannon diversity index values [49]. We also performed a similar analysis based on research
done by Rocchini et al. (2010) [53] that theorized that greater community heterogeneity would be
correlated with greater spectral heterogeneity. In this analysis, we used measured heterogeneity as
centroid distances derived from a principal component analysis where heterogeneity was measured
as the distance from the center point of the PCA [53,76]. Basic linear regression was used to assess
the relationship between diversity and spectral coefficients of variation, as well as between spectral
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heterogeneity and community heterogeneity measured using Euclidian distances from the global
mean. Histograms were used to determine whether the data were normally distributed, and we
used Anderson-Darling tests to reject the null hypothesis of uniformity in the distribution of our data
(Figure S3).

2.3.3. Hyperspectral Image Analysis

For the APEX field site, we used the aerial imagery to perform a supervised classification analysis
using a random forests (RF) model to classify PFTs across the landscape [77]. We designated four
different classes representative of dominant site PFTs. The classes were coniferous forests, low shrub,
tussock meadow, and graminoid fen (Figure S4). Before performing the analysis, we manually
identified approximately one hundred training points within each class using a high-resolution aerial
photograph collected in July of 2016 using an eBee senseFly unmanned aerial system (UAS) mounted
with a Canon S110 camera (Figure 4, left panel). Although identifying training points in the field would
have been ideal, we are confident that we were able to select training points that accurately reflected
the ascribed vegetation cover class based on the image and our knowledge of the site. The UAS
was flown at a height of approximately 92 m above the ground. The resulting imagery had a 3-cm
ground resolution and was mosaicked together and georeferenced using a series of high-resolution
GPS points that were collected via total station at the time of data collection. The UAS image was
mosaicked using the Agisoft Photscan software platform. RF analyses were completed using the
randomForest R package [78] and data were processed using the rgdal R package [79]. Standard
model parameters were used in the RF model. Five hundred trees were created, and the number of
variables considered at each node was the square root of the number of parameters. We used a model
selection approach, as implemented in the rfUtilities R package [80], to find the most parsimonious and
explanatory set of predictors. We used the overall out-of-bag accuracy and Cohen’s kappa coefficient
to evaluate model performance [81]. Variable importance was assessed using the mean decrease in
accuracy and mean decrease in impurity upon iterated variable permutation, as implemented in the
randomForest R package; variables that are more important will tend to cause higher mean decreases in
both accuracy and node impurity when they permuted [77]. All associated mapmaking was performed
using Quantum GIS [82].
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3. Results 

Figure 4. (Left) Unmanned aerial image rendered in three visible bands, including a near-infrared
band. Image has been clipped to the extent of the hyperspectral aerial image. The UAS image was
used to select supervised classification training points. (Right) Extent of hyperspectral aerial dataset,
rendered in true-color RGB bands at 457, 570, and 650 nm. The APEX water table manipulation areas
can be seen as the white squares to the north of the images.
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3. Results

3.1. Response of Plant Functional Composition and Species Diversity to Experimental Maniuplation

Analysis of the vegetation cover data indicated that plant communities at both sites had diverged
as a result of the experimental manipulation of water tables, temperatures, and CO2 levels. At APEX,
the most striking trend was the overall higher percent cover of litter and reduced cover of nearly
all other PFTs in the lowered water table treatment as compared with the control and raised water
table treatments (Table 3, Figure 5). Sedges, equisetum, forbs, and shrubs all showed trends towards
higher abundance in the control treatment, and mosses were significantly more abundant in the control
than other treatment (Table 3). At SPRUCE, we found a trend towards greater shrub cover with
warming, coinciding with a decrease in forb cover (Figure 6, Table 4). Graminoid species remained
fairly consistent across the treatments (Figure 6).

Our analysis of diversity also showed a trend towards greater alpha diversity in the control
treatment as compared to the raised or lowered treatments at APEX (ANOVADiversity F2,10 = 3.52,
p = 0.07) (Figure 7). We did not find any trends in plot-level diversity with warming or CO2 level at
the SPRUCE site (Table 3).

Table 3. APEX ANOVA results. Italicized values indicate statistical significance at an alpha level of 0.05.

PFT Sum Sq Mean Sq F2, 10 P

Forb 19.24 9.62 1.478 0.274
Sedge 182.9 91.46 2.094 0.174
Shrub 13.36 6.73 2.724 0.114

Equisetum 68.77 34.39 2.03 0.182
Grass 402.7 201.4 1.997 0.186
Moss 182.7 91.37 8.779 0.006
Litter 980.9 490.5 4.135 0.049

Diversity 0.650 0.33 3.516 0.07
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Figure 5. Results of APEX vegetation cover sampling. Bars represent the treatment mean. Error bars
represent standard deviation. Percent cover was calculated for each PFT as a fraction of the total
number of observations. Data were analyzed for statistical significance using a one-way ANOVA with
a post-hoc pairwise means comparison for significant difference among treatments. Bars with the same
symbol are significantly different from each other (ANOVA, p < 0.05).
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3.2. Relationship between Community Composition and Spectral Response

The results of the principal component analyses (PCAs) of our plot-level spectral datasets indicated
that variation in plot-level vegetation characteristics was related to differentiation in spectral reflectance
at both sites (Figure 8). At APEX, results from our permutation tests indicated that spectral reflectance
varied by treatment (r2 = 0.45, p = 0.005), with the most variation in reflectance explained by plot-level
species diversity (Table 5). Variation in the spectra at APEX was closely associated with the percent
cover of mosses and forbs. Mosses and forbs together accounted for less than 10% on average of the
cover at APEX, but had a strong effect on spectral reflectance, particularly in the control and raised
water table treatment plots. The lowered water table treatment was associated with a greater litter
cover, coinciding with lower plot-level species diversity (Figure 8, left panel). Overall, the first principal
component explained 79% of the variation in the dataset, driven primarily by greater diversity in the
control and raised water table treatments, and higher litter cover in the lowered water table treatment
(Figure 8, left panel, Table 5).

PCA results from the reflectance data at SPRUCE showed significant spectral differences across
temperature (r2 = 0.28, p = 0.01) and CO2 treatments (r2 = 0.19, p = 0.01) (Figure 8, right panel).
Like APEX, reflectance spectra responded to differences in forb cover (Table 6). Unlike APEX, shrub
cover also emerged as a significant vector in the SPRUCE data. Overall, the first principal component
explained 96% of total variance among spectral scans. Since we did not find any strong differences in
diversity among treatments, diversity did not emerge as a significant vector in the analysis. These
results suggest that the relative cover of shrubs versus forbs associated with temperature and CO2
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Figure 8. (Left) Principal component analysis for APEX spectral data demonstrating distribution of
treatment plots with community variables mapped. Arrow length represents the strength of the gradient.
(Right) Principal component analysis of spectral data at SPRUCE, demonstrating the distribution of
temperature treatments (shown in ◦C) with community variables mapped on. The length of the arrow
represents the strength of the gradient.
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Table 5. Results from the APEX permutation test of the relationship between variance within spectral
principal component analysis and the percent cover of different plant functional types. Asterisk
indicates statistical significance at a 95% confidence level.

Variable PC1 PC2 r2 p

Diversity –0.997 –0.074 0.495 0.038 *
Equisetum −0.990 0.142 0.185 0.370

Forbs −0.839 −0.545 0.151 0.458
Sedges −0.405 −0.914 0.138 0.491
Grasses 0.224 0.975 0.016 0.910
Litter 0.898 0.440 0.305 0.169
Moss −0.837 −0.547 0.364 0.108

Shrubs −0.922 −0.386 0.163 0.403
LAI −0.313 −0.950 0.126 0.486

Table 6. Results from the SPRUCE permutation test of the relationships between the spectral principal
component analysis, percent cover of different plant functional types, and plot-level species diversity.
One asterisk indicates statistical significance at a 95% confidence level, and two asterisks indicate
significance at a 99% confidence interval. LAI refers to leaf area index.

Variable PC1 PC2 r2 p

Forbs 0.926 0.377 0.244 0.011 *
Sedges 0.271 0.963 0.039 0.520
Shrubs 0.347 –0.938 0.262 0.007 **
Trees 0.906 −0.423 0.033 0.581

Diversity 0.771 0.637 0.095 0.204

3.3. Relationship between Species Diversity and Spectral Variation

We found that plot-level species diversity was a significant predictor of spectral variation among
plots at the APEX site, but not at the SPRUCE site (Tables 5 and 6). Based on this result we examined
the relationship between species diversity and spectral diversity at the APEX site. The relationship
between Shannon diversity and spectral CV showed a positive relationship (R2

adj = 0.36, F2,11 = 4.23,
p = 0.06, RMSE = 0.30) (Figure 9, left panel). The relationship between community and spectral
heterogeneity showed a positive relationship (R2

adj = 0.21, F2.11 = 4.11, p = 0.07, RMSE = 0.78) (Figure 9,
right panel). It should be noted that differences in heterogeneity are relative to a global mean value.
Points closest to zero along both axes are less heterogeneous than those further from the global mean.
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3.4. Hyperspectral Image Analysis—Mapping of PFTs

The results of the mapping project indicate that the random forests supervised classification
analysis was highly successful at distinguishing among cover types (Figure 10). The random forests
model selection algorithm was set to separate cover into four classes based on the entire hyperspectral
dataset of 360 spectral bands. The overall model had an out-of-bag error rate of 9.85% and a Cohen’s
kappa coefficient of 0.869. Forest and shrub classes were classified with the greatest accuracy, and
graminoid fen was the least accurate (Table 7). We found several spectral bands to be consistently
important in making these classifications, as estimated by both the mean decrease in accuracy as
well as the mean decrease in node impurity due to variable permutation (Table 8). Nearly all
these bands fell within the 1800–2500 nm range representing the short-wave infrared region of the
electromagnetic spectrum.

Remote Sens. 2018, 10, x FOR PEER REVIEW  17 of 25 

 

Band number Mean Decrease Band number Mean decrease 
1210 7.53 1261 4.68 
1233 6.99 1210 4.32 
1261 6.77 1546 3.78 
1193 6.76 1255 3.71 
2441 6.71 1233 3.60 
1204 6.66 1552 3.49 
2447 6.66 1187 3.47 
2430 6.61 1244 3.40 
2412 6.56 1267 3.35 
474 6.52 1215 3.29 

 

Figure 10. Results of supervised classification analysis of PFT distribution at APEX and the 
surrounding area made using a random forests modeling approach.   
Figure 10. Results of supervised classification analysis of PFT distribution at APEX and the surrounding
area made using a random forests modeling approach.



Remote Sens. 2019, 11, 1685 15 of 22

Table 7. Results of supervised random forests classification analysis.

Forest Graminoid Shrub Tussock Class Error

Forest 94 5 0 0 0.051
Graminoid fen 7 80 2 10 0.192

Shrub 1 3 95 0 0.040
Tussock Grass 1 9 1 88 0.111

Table 8. Random forests model output of variable importance for spectral bands used to perform the
land cover classification analysis.

Model Accuracy Gini/Impurity

Band number Mean Decrease Band number Mean decrease

1210 7.53 1261 4.68
1233 6.99 1210 4.32
1261 6.77 1546 3.78
1193 6.76 1255 3.71
2441 6.71 1233 3.60
1204 6.66 1552 3.49
2447 6.66 1187 3.47
2430 6.61 1244 3.40
2412 6.56 1267 3.35
474 6.52 1215 3.29

4. Discussion

4.1. Hyperspectral Remote Sensing of Peatland Response to Climate Change

By leveraging two large ecosystem manipulation experiments we have demonstrated that
hyperspectral remote sensing can capture the response of peatland functional composition and species
diversity to hydrologic change and increasing temperatures. Prior research has already demonstrated
that hydrology, temperature, and CO2 affect peatland ecosystem structure and function [22,23,26,83–85].
Remote sensing studies in peatlands have also demonstrated the efficacy of hyperspectral methods
in mapping peatland flora [17,86,87]. However, we have not encountered any study that has used
hyperspectral remote sensing to track peatland ecological response to the diverse suite of global change
drivers explored here. Our field results from the APEX site indicate that long-term hydrologic change
in rich fen peatlands leads to shifts in species diversity and ecosystem productivity. The dominant
source of variation within the principal component analysis of the APEX spectral data appeared
largely driven by the greater diversity and overall cover associated with the control and raised plots,
and a higher percent cover of litter associated with the lowered plots, which describes a gradient of
ecosystem GPP [47]. At the SPRUCE experiment, we found that species composition varied among
treatments. The results of our vegetation cover sampling indicated an increasing trend in shrub cover,
and an associated decreasing trend in forb cover with warming. These results align with previous
research linking warmer air temperatures and increases in soil nitrogen availability with an increased
shrub growth in far northern ecosystems [4,88,89]. In our analysis of the SPRUCE spectral data, shrub
and forb cover both emerged as statistically significant vectors within the multi-variate analysis of
reflectance. Our results support the feasibility of tracking changes in PFT cover, in particular of shrubs,
using hyperspectral methods.

We did not track non-vascular moss cover at SPRUCE because they were ubiquitous across the
site. However, prior research indicates that the moisture status of peat-forming mosses can strongly
influence reflectance spectra [85,90]. Further research at SPRUCE would characterize the role of moss
moisture status on hyperspectral reflectance properties. However, focusing solely on vascular plant
cover, our results highlight the potential to use hyperspectral data to identify and track a range of
different climate change-induced impacts to northern boreal peatlands.
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4.2. Remote Sensing of Boreal Peatland Species Diversity

In low-diversity ecosystems such as peatlands, the loss of species diversity may have cascading
effects on ecosystem function and productivity [44]. The low functional redundancy of peatlands is such
that the loss of a species may also represent the loss of an entire plant type, thereby negatively effecting
ecological productivity [47]. We demonstrate that drought in peatlands negatively affects diversity,
particularly of mosses and herbaceous species. Specifically, variation and heterogeneity in spectral
reflectance increased with increasing Shannon diversity among plots. Increasing spectral heterogeneity
has been previously used as a proxy for diversity in studies that have mapped peatland ecological
diversity using remote sensing [91–93]. This type of study is based on the species–area relationship in
which species richness increases with scale across a heterogeneous landscape [94]. These studies have
extrapolated species richness by calculating indices such as the normalized difference vegetation index
(NDVI), then calculating heterogeneity for pixel aggregates of varying spatial scales [53,55]. Where
these approaches have modeled diversity as a function of area, our approach captures diversity directly
by comparing the spectral heterogeneity among plots with varying levels of diversity [53]. Alternative
approaches have attempted to map diversity through the identification of unique species [54,95–97].
However, this approach is challenging in non-forested systems in which individual organisms do not
occupy an entire pixel. Our results indicate remote sensing may be used to estimate relative levels of
diversity directly by comparing the spectral heterogeneity of measurements performed over a variety
of different canopy types. We suggest that these results offer the ability to track diversity in systems
with mixed or heterogeneous community assemblages that include trees, shrubs, graminiods, or other
plant types [98].

4.3. Hyperspectral Characterization and Mapping of Plant Functional Types

Our results are in conversation with a growing body of research leveraging remotely sensed
data to track vegetation change in peatland ecosystems [17,86,87]. The results of our analyses of both
our plot-level and aerial datasets demonstrate the efficacy of using hyperspectral measurements to
characterize the distribution of peatland PFTs. Through our close-range hyperspectral data collection
we saw that the cover of PFTs was a driver of spectral variation. Despite relatively weak trends in our
vegetation cover data at both sites, the reflectance spectra were highly responsive to subtle changes in
the vegetation cover resulting from treatment. In particular, at SPRUCE, differences in the relative cover
of shrubs versus forbs had a strong effect on spectral reflectance. This is likely due to the differences
in stature, leaf structure, and foliar chemistry between high-growing woody shrubs compared with
ground-layer herbaceous PFTs such as forbs [36,99]. We also predict that collecting data in the early
fall improved our ability to detect variation among treatments because carotenoids and anthocyanins
present in leaf tissues around senescence may have increased optical diversity, allowing for greater
distinction among PFTs. Future research could examine the role of seasonality in improving the efficacy
of hyperspectral remote sensing in making species-level distinctions.

Our plot-level findings prompted us to apply hyperspectral remote sensing to map peatland plant
functional types over a larger spatial scale. The cover types represented within the aerial hyperspectral
dataset included the PFTs that were present in our field measurements. We found the land-cover
classification analysis was successful at distinguishing among different PFTs. This was particularly true
for forest and shrub cover, which had the lowest error rate in the classification analysis. The percent
cover of shrubs was also one of the strongest sources of variation in the field-based measurements
at SPRUCE. We predict that the forested and shrub-covered regions of our study area were the most
successfully mapped because their stature and leaf structure are clearly distinguishable from other
PFTs, whereas graminiod fen and tussock grasses were less optically distinct from each other.

Our results indicate that reflectance in the short-wave infrared regions of the electromagnetic
spectrum are particularly important in mapping peatland PFTs. Variable importance indicators such
as model accuracy indicated that several SWIR bands between 1800 and 2500 nm were instrumental
in creating the final classification analysis. These results support prior research in peatlands that
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has shown SWIR reflectance to be particularly sensitive to changes in peatland plant cover and
moisture status [85]. Given the importance of changing shrub cover within the greater arctic and boreal
landscape, these results support the application of hyperspectral measurements to track changes in the
distribution of shrubs [4].

In arctic and boreal ecosystems where the environment is undergoing rapid change, the methods
described here could prove invaluable to developing assessments of shifts in species composition over
time. Due to the large spatial extent and low population density of the far north, examining changes to
the landscape across broad spatial scales and over time must largely be achieved using remote sensing
techniques. The use of hyperspectral imagery is integral to this approach because of the ability to select
spectral bands that best capture variation across community types [90]. The high spatial resolution of
aerial over satellite data is also key to this approach because it allows for fine-scale distinctions among
cover classes. There are multiple research programs that collect hyperspectral data and make it publicly
available to scientists. For example, NASA’s Airborne Visible/Infrared Imaging Spectrometer collected
aerial hyperspectral imagery over the APEX field site in 2017 and 2018 as part of the Arctic and Boreal
Vulnerability Experiment (ABoVE) [100]. With the launch of NASA’s Hyperspectral InfraRed Imager
(HySPIRI) planned for 2021, global satellite hyperspectral imagery will become available to the remote
sensing research community within the next several years [101]. The National Ecological Observatory
Network also recently launched its hyperspectral Aerial Observation Platform with the mission of
bridging spatial scales from organisms to landscapes [102]. A 2017 survey published by the National
Academies of Science, Engineering and Medicine regarding the future of earth observation placed a
high priority on hyperspectral data acquisition for the purposes of tracking diversity and changes in
PFT cover (National Academies Press 2017). Our results establish statistical relationships between
remotely sensed hyperspectral measurements, species diversity, and plant functional cover that could
be used in future studies to identify and track community- and ecosystem-level changes in arctic and
boreal regions.

5. Conclusions

The results from our study demonstrate that warming and hydrologic change lead to detectable
changes in species composition and ecosystem productivity in boreal peatlands. We have further
demonstrated the utility and efficacy of applying remotely sensed data toward characterizing and
tracking changes in plant functional cover over time. Remote sensing is emerging as an effective tool
to support ecological research, given its growing ability to characterize key elements of ecosystem
structure and function such as leaf area, foliar chemistry, species diversity, and, more recently, the
cover of different species and PFTs. We have shown that remote sensing can be used to detect the
effects of a range of global change drivers on the productivity and functional composition of two types
of peatland ecosystems representative of extensive areas of the northern boreal environment. We have
also shown the feasibility of using hyperspectral remote sensing to map the distribution of PFTs over
large spatial extents. In light of rapid global change, this approach could provide valuable insight into
the changing ecology of the far north.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-4292/11/14/1685/s1,
Figure S1: Mean treatment reflectance spectra for the APEX site. Five plots are averaged in the control, and four are
averaged in the lowered and raised plots. Each plot-level average is comprised of three scans taken in succession,
Figure S2: Mean treatment reflectance spectra for the SPRUCE site. Each spectra represents six plots across two
chambers. Each plot-level average is comprised of three scans taken in succession, Figure S3: Distribution of data
included in the linear modeling of the relationship between hyperspectral and plot-level characteristics. We also
performed Anderson-Darling tests to support our use of these data in our models. We were able to reject the null
hypothesis that the data were uniformly distributed in all cases, Figure S4: Spectral response curves for the cover
types represented in the aerial hyperspectral dataset to demonstrate differentiation among cover types.
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