107 research outputs found
Signatures of the super fluid-insulator phase transition in laser driven dissipative nonlinear cavity arrays
We analyze the non-equilibrium dynamics of a gas of interacting photons in an
array of coupled dissipative nonlinear cavities driven by a pulsed external
coherent field. Using a mean-field approach, we show that the system exhibits a
phase transition from a Mott-insulator-like to a superfluid regime. For a given
single-photon nonlinearity, the critical value of the photon tunneling rate at
which the phase transition occurs increases with the increasing photon loss
rate. We checked the robustness of the transition by showing its insensitivity
to the initial state prepared by the the pulsed excitation. We find that the
second-order coherence of cavity emission can be used to determine the phase
diagram of an optical many-body system without the need for thermalization.Comment: 4 pages, 4 figure
Architectural Support for Optimizing Huge Page Selection Within the OS
© 2023 Copyright held by the owner/author(s). This document is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/
This document is the Accepted version of a Published Work that appeared in final form in 56th ACM/IEEE International Symposium on Microarchitecture (MICRO), Toronto, Canada. To access the final edited and published work see https://doi.org/10.1145/3613424.3614296Irregular, memory-intensive applications often incur high translation lookaside buffer (TLB) miss rates that result in significant address translation overheads. Employing huge pages is an effective way to reduce these overheads, however in real systems the number of available huge pages can be limited when system memory is nearly full and/or fragmented. Thus, huge pages must be used selectively to back application memory. This work demonstrates that choosing memory regions that incur the most TLB misses for huge page promotion best reduces address translation overheads. We call these regions High reUse TLB-sensitive data (HUBs). Unlike prior work which relies on expensive per-page software counters to identify promotion regions, we propose new architectural support to identify these regions dynamically at application runtime. We propose a promotion candidate cache (PCC) that identifies HUB candidates based on hardware page table walks after a lastlevel TLB miss. This small, fixed-size structure tracks huge pagealigned regions (consisting of base pages), ranks them based on observed page table walk frequency, and only keeps the most frequently accessed ones. Evaluated on applications of various memory intensity, our approach successfully identifies application pages incurring the highest address translation overheads. Our approach demonstrates that with the help of a PCC, the OS only needs to promote 4% of the application footprint to achieve more than 75% of the peak achievable performance, yielding 1.19-1.33× speedups over 4KB base pages alone. In real systems where memory is typically fragmented, the PCC outperforms Linux’s page promotion policy by 14% (when 50% of total memory is fragmented) and 16% (when 90% of total memory is fragmented) respectively
Regular modes in rotating stars
Despite more and more observational data, stellar acoustic oscillation modes
are not well understood as soon as rotation cannot be treated perturbatively.
In a way similar to semiclassical theory in quantum physics, we use acoustic
ray dynamics to build an asymptotic theory for the subset of regular modes
which are the easiest to observe and identify. Comparisons with 2D numerical
simulations of oscillations in polytropic stars show that both the frequency
and amplitude distributions of these modes can accurately be described by an
asymptotic theory for almost all rotation rates. The spectra are mainly
characterized by two quantum numbers; their extraction from observed spectra
should enable one to obtain information about stellar interiors.Comment: 5 pages, 4 figures, discussion adde
Fresnel filtering in lasing emission from scarred modes of wave-chaotic optical resonators
We study lasing emission from asymmetric resonant cavity (ARC) GaN
micro-lasers. By comparing far-field intensity patterns with images of the
micro-laser we find that the lasing modes are concentrated on three-bounce
unstable periodic ray orbits, i.e. the modes are scarred. The high-intensity
emission directions of these scarred modes are completely different from those
predicted by applying Snell's law to the ray orbit. This effect is due to the
process of ``Fresnel filtering'' which occurs when a beam of finite angular
spread is incident at the critical angle for total internal reflection.Comment: 4 pages, 3 figures (eps), RevTeX 3.1, submitted to Phys. Rev. Lett;
corrected a minor (transcription) erro
Fermionized photons in an array of driven dissipative nonlinear cavities
We theoretically investigate the optical response of a one-dimensional array
of strongly nonlinear optical microcavities. When the optical nonlinearity is
much larger than both losses and inter-cavity tunnel coupling, the
non-equilibrium steady state of the system is reminiscent of a strongly
correlated Tonks-Girardeau gas of impenetrable bosons. Signatures of strong
correlations are identified in the absorption spectrum of the system, as well
as in the intensity correlations of the emitted light. Possible experimental
implementations in state-of-the-art solid-state devices are discussed
Regular Oscillation Sub-spectrum of Rapidly Rotating Stars
We present an asymptotic theory that describes regular frequency spacings of
pressure modes in rapidly rotating stars. We use an asymptotic method based on
an approximate solution of the pressure wave equation constructed from a stable
periodic solution of the ray limit. The approximate solution has a Gaussian
envelope around the stable ray, and its quantization yields the frequency
spectrum. We construct semi-analytical formulas for regular frequency spacings
and mode spatial distributions of a subclass of pressure modes in rapidly
rotating stars. The results of these formulas are in good agreement with
numerical data for oscillations in polytropic stellar models. The regular
frequency spacings depend explicitly on internal properties of the star, and
their computation for different rotation rates gives new insights on the
evolution of mode frequencies with rotation.Comment: 14 pages, 10 figure
Strong Interactions in Multimode Random Lasers
Unlike conventional lasers, diffusive random lasers (DRLs) have no resonator
to trap light and no high-Q resonances to support lasing. Due to this lack of
sharp resonances the DRL has presented a challenge to conventional laser
theory. We present a theory able to treat the DRL rigorously, and provide
results on the lasing spectra, internal fields and output intensities of DRLs.
Typically DRLs are highly multimode lasers, emitting light at a number of
wavelengths. We show that the modal interactions through the gain medium in
such lasers are extremely strong and lead to a uniformly spaced frequency
spectrum, in agreement with recent experimental observations.Comment: 13 pages, 4 figures. Supplementary information available at
arXiv:0805.449
Mesoscopic interplay of superconductivity and ferromagnetism in ultra-small metallic grains
We review the effects of electron-electron interactions on the ground-state
spin and the transport properties of ultra-small chaotic metallic grains. Our
studies are based on an effective Hamiltonian that combines a superconducting
BCS-like term and a ferromagnetic Stoner-like term. Such terms originate in
pairing and spin exchange correlations, respectively. This description is valid
in the limit of a large dimensionless Thouless conductance. We present the
ground-state phase diagram in the fluctuation-dominated regime where the
single-particle mean level spacing is comparable to the bulk BCS pairing gap.
This phase diagram contains a regime in which pairing and spin exchange
correlations coexist in the ground-state wave function. We discuss the
calculation of the tunneling conductance for an almost-isolated grain in the
Coulomb-blockade regime, and present measurable signatures of the competition
between superconductivity and ferromagnetism in the mesoscopic fluctuations of
the conductance.Comment: 6 pages, 3 figures, To be published in the proceedings of the NATO
Advance Research Workshop "Recent Advances in Nonlinear Dynamics and Complex
System Physics.
Ultrafast optical control of entanglement between two quantum dot spins
The interaction between two quantum bits enables entanglement, the
two-particle correlations that are at the heart of quantum information science.
In semiconductor quantum dots much work has focused on demonstrating single
spin qubit control using optical techniques. However, optical control of
entanglement of two spin qubits remains a major challenge for scaling from a
single qubit to a full-fledged quantum information platform. Here, we combine
advances in vertically-stacked quantum dots with ultrafast laser techniques to
achieve optical control of the entangled state of two electron spins. Each
electron is in a separate InAs quantum dot, and the spins interact through
tunneling, where the tunneling rate determines how rapidly entangling
operations can be performed. The two-qubit gate speeds achieved here are over
an order of magnitude faster than in other systems. These results demonstrate
the viability and advantages of optically controlled quantum dot spins for
multi-qubit systems.Comment: 24 pages, 5 figure
An exfoliation and enrichment strategy results in improved transcriptional profiles when compared to matched formalin fixed samples
<p>Abstract</p> <p>Background</p> <p>Identifying the influence formalin fixation has on RNA integrity and recovery from clinical tissue specimens is integral to determining the utility of using archival tissue blocks in future molecular studies. For clinical material, the current gold standard is unfixed tissue that has been snap frozen. Fixed and frozen tissue however, both require laser capture microdissection to select for a specific cell population to study. The recent development of a sampling method capable of obtaining a viable, enriched cell population represents an alternative option in procuring cells from clinical material for molecular research purposes. The expression profiles of cells obtained by using this procurement approach, in conjunction with the profiles from cells laser capture microdissected from frozen tissue sections, were compared to the expression profiles from formalin fixed cells to determine the influence fixation has on expression profiles in clinical material.</p> <p>Methods</p> <p>Triplicate samples of non-neoplastic colonic epithelial cells were recovered from a hemicolectomy specimen using three different procurement methods from the same originating site: 1) an exfoliation and enrichment strategy 2) laser capture microdissection from formalin fixed tissue and 3) laser capture microdissection from frozen tissue. Parameters currently in use to assess RNA integrity were utilized to assess the quality of recovered RNA. Additionally, an expression microarray was performed on each sample to assess the influence each procurement technique had on RNA recovery and degradation.</p> <p>Results</p> <p>The exfoliation/enrichment strategy was quantitatively and qualitatively superior to tissue that was formalin fixed. Fixation negatively influenced the expression profile of the formalin fixed group compared to both the frozen and exfoliated/enrichment groups.</p> <p>Conclusion</p> <p>The exfoliation/enrichment technique represents a superior alternative in tissue procurement and RNA recovery relative to formalin fixed tissue. None of the deleterious effects associated with formalin fixation are encountered in the exfoliated/enriched samples because of the absence of its use in this protocol. The exfoliation/enrichment technique also represents an economical alternative that will yield comparable results to cells enriched by laser capture microdissection from frozen tissue sections.</p
- …