145 research outputs found

    Sulfur isotope patterns of iron sulfide and barite nodules in the Upper Cretaceous Chalk of England and their regional significance in the origin of coloured chalks

    Get PDF
    The relationship between the development of iron sulfide and barite nodules in the Cenomanian Chalk of England and the presence of a red hematitic pigment has been investigated using sulfur isotopes. In southern England where red and pink chalks are absent, iron sulfide nodules are widespread. Two typical large iron sulfide nodules exhibit δ34S ranging from −48.6‰ at their core to −32.6‰ at their outer margins. In eastern England, where red and pink chalks occur in three main bands, there is an antipathetic relationship between the coloured chalks and the occurrence of iron sulfide or barite nodules. Here iron sulfide, or its oxidised remnants, are restricted to two situations: (1) in association with hard grounds that developed originally in chalks that contained the hematite pigment or its postulated precursor FeOH3, or (2) in regional sulfidization zones that cut across the stratigraphy. In the Cenomanian Chalk exposed in the cliffs at Speeton, Yorkshire, pyrite and marcasite (both iron sulfide) nodules range in δ34S from −34.7‰ to +40.0‰. In the lower part of the section δ34S vary from −34.8‰ to +7.8‰, a single barite nodule has δ34S between +26.9‰ and +29.9‰. In the middle part of the section δ34S ranges from +23.8‰ to +40.0‰. In the sulfidization zones that cut across the Cenomanian Chalk of Lincolnshire the iron sulfide nodules are typically heavily weathered but these may contain patches of unoxidised pyrite. In these zones, δ34S ranges from −32.9‰ to +7.9‰. The cross-cutting zones of sulfidization in eastern England are linked to three basement faults – the Flamborough Head Fault Zone, the Caistor Fault and the postulated Wash Line of Jeans (1980) – that have affected the deposition of the Chalk. It is argued that these faults have been both the conduits by which allochthonous fluids – rich in hydrogen sulfide/sulfate, hydrocarbons and possibly charged with sulfate-reducing bacteria – have penetrated the Cenomanian Chalk as the result of movement during the Late Cretaceous or Cenozoic. These invasive fluids are associated with (1) the reduction of the red hematite pigment or its praecursor, (2) the subsequent development of both iron sulfides and barite, and (3) the loss of overpressure in the Cenomanian Chalk and its late diagenetic hardening by anoxic cementation. Evidence is reviewed for the origin of the red hematite pigment of the coloured chalks and for the iron involved in the development of iron sulfides, a hydrothermal or volcanogenic origin is favoured

    Water chemistry reveals a significant decline in coral calcification rates in the southern Red Sea

    Get PDF
    Experimental and field evidence support the assumption that global warming and ocean acidification is decreasing rates of calcification in the oceans. Local measurements of coral growth rates in reefs from various locations have suggested a decline of ~6–10% per decade since the late 1990's. Here, by measuring open water strontium-to-alkalinity ratios along the Red Sea, we show that the net contribution of hermatypic corals to the CaCO3 budget of the southern and central Red Sea declined by ~100% between 1998 and 2015 and remained low between 2015 and 2018. Measured differences in total alkalinity of the Red Sea surface water indicate a 26 ± 16% decline in total CaCO3 deposition rates along the basin. These findings suggest that coral reefs of the southern Red Sea are under severe stress and demonstrate the strength of geochemical measurements as cost-effective indicators for calcification trends on regional scales

    The microbially driven formation of siderite in salt marsh sediments

    Get PDF
    We employ complementary field and laboratory‐based incubation techniques to explore the geochemical environment where siderite concretions are actively forming and growing, including solid‐phase analysis of the sediment, concretion, and associated pore fluid chemistry. These recently formed siderite concretions allow us to explore the geochemical processes that lead to the formation of this less common carbonate mineral. We conclude that there are two phases of siderite concretion growth within the sediment, as there are distinct changes in the carbon isotopic composition and mineralogy across the concretions. Incubated sediment samples allow us to explore the stability of siderite over a range of geochemical conditions. Our incubation results suggest that the formation of siderite can be very rapid (about two weeks or within 400 hr) when there is a substantial source of iron, either from microbial iron reduction or from steel material; however, a source of dissolved iron is not enough to induce siderite precipitation. We suggest that sufficient alkalinity is the limiting factor for siderite precipitation during microbial iron reduction while the lack of dissolved iron is the limiting factor for siderite formation if microbial sulfate reduction is the dominant microbial metabolism. We show that siderite can form via heated transformation (at temperature 100°C for 48 hr) of calcite and monohydrocalcite seeds in the presence of dissolved iron. Our transformation experiments suggest that the formation of siderite is promoted when carbonate seeds are present

    Coupled sulfur and oxygen isotope insight into bacterial sulfate reduction in the natural environment

    Get PDF
    We present new sulfur and oxygen isotope data in sulfate (δ34SSO4 and δ18OSO4 respectively), from globally distributed marine and estuary pore fluids. We use this data with a model of the biochemical steps involved in bacterial sulfate reduction (BSR) to explore how the slope on a δ18OSO4 vs. δ34SSO4 plot relates to the net sulfate reduction rate (nSRR) across a diverse range of natural environments. Our data demonstrate a correlation between the nSRR and the slope of the relative evolution of oxygen and sulfur isotopes (δ18OSO4 vs. δ34SSO4) in the residual sulfate pool, such that higher nSRR results in a lower slope (sulfur isotopes increase faster relative to oxygen isotopes). We combine these results with previously published literature data to show that this correlation scales over many orders of magnitude of nSRR. Our model of the mechanism of BSR indicates that the critical parameter for the relative evolution of oxygen and sulfur isotopes in sulfate during BSR in natural environments is the rate of intracellular sulfite oxidation. In environments where sulfate reduction is fast, such as estuaries and marginal marine environments, this sulfite reoxidation is minimal, and the δ18OSO4 increases more slowly relative to the δ34SSO4. In contrast, in environments where sulfate reduction is very slow, such as deep sea sediments, our model suggests sulfite reoxidation is far more extensive, with as much as 99% of the sulfate being thus recycled; in these environments the δ18OSO4 increases much more rapidly relative to the δ34SSO4. We speculate that the recycling of sulfite plays a physiological role during BSR, helping maintain microbial activity where the availability of the electron donor (e.g. available organic matter) is low

    An emulation-based approach for interrogating reactive transport models

    Get PDF
    We present a new approach to understand the interactions among different chemical and biological processes modelled in environmental reactive transport models (RTMs) and explore how the parameterisation of these processes influences the results of multi-component RTMs. We utilize a previously published RTM consisting of 20 primary species, 20 secondary complexes, 17 mineral reactions and 2 biologically-mediated reactions which describes bio-stimulation using sediment from a contaminated aquifer. We choose a subset of the input parameters to vary over a range of values. The result is the construction of a new dataset that describes the model behaviour over a range of environmental conditions. Using this dataset to train a statistical model creates an emulator of the underlying RTM. This is a condensed representation of the original RTM that facilitates rapid exploration of a broad range of environmental conditions and sensitivities. As an illustration of this approach, we use the emulator to explore how varying the boundary conditions in the RTM describing the aquifer impacts the rates and volumes of mineral precipitation. A key result of this work is the recognition of an unanticipated dependency of pyrite precipitation on pCO2 in the injection fluid due to the stoichiometry of the microbially-mediated sulphate reduction reaction. This complex relationship was made apparent by the emulator, while the underlying RTM was not specifically constructed to create such a feedback. We argue that this emulation approach to sensitivity analysis for RTMs may be useful in discovering such new coupled sensitives in geochemical systems and for designing experiments to optimise environmental remediation. Finally, we demonstrate that this approach can maximise specific mineral precipitation or dissolution reactions by using the emulator to find local maxima, which can be widely applied in environmental systems.</p

    Calcium isotope fractionation in sedimentary pore fluids from ODP Leg 175: Resolving carbonate recrystallization

    Get PDF
    We present calcium isotope data from pore fluids and solids from Ocean Drilling Program Leg 175: Sites 1081 and 1086 (off the coast of West Africa). These sites are similar with respect to geographic location, sediment age (from modern to 8 Myr), and water depth (800 m), but Site 1081 is carbonate-poor, whereas Site 1086 is carbonate-rich. Therefore, these sites are suited for the exploration of the influence of sediment type on carbonate dissolution, precipitation, and recrystallization. We use two numerical modelling approaches to explore the rates of carbonate dissolution and precipitation in the sediment column. The first is the standard diffusion-reaction approach, using the strontium concentration within the pore fluid to ascertain a dissolution rate for the carbonate, which is then applied to a second model of calcium isotopes within the pore fluid to calculate precipitation rates. Given the high sedimentation rates we also apply an advection-reaction model (Huber et al., 2017) which results in the same depth distribution of carbonate precipitation but significantly higher overall rates, which is discussed. Calcium isotope ratios in pore fluid calcium increase in zones where our model predicts carbonate precipitation, and approach isotopic equilibrium with the solid in zones where our model predicts equivalent rates of dissolution and precipitation, similar to previous findings. Contrary to previous findings in marine sediments, our model requires a calcium isotope fractionation on carbonate precipitation to fit the data, as there is an offset between the δ44Ca of the fluid and the solid. Using the zones of carbonate precipitation determined from the models and previously published carbon isotope profiles of the dissolved inorganic carbon from these sites, we suggest that the δ13C of the authigenic carbonate is uniformly lower than biogenic carbonate but by a wider range than was previously suggested

    Dissolved Strontium, Sr/Ca Ratios, and the Abundance of Acantharia in the Indian and Southern Oceans

    Get PDF
    We report measurements of strontium concentrations and Sr/Ca ratios in the Indian and Southern Oceans, which show that subtle geochemical variations along the main thermocline are the product of calcium carbonate (CaCO3) and celestite (SrSO4) precipitation and dissolution. Our calculations suggest that celestite skeletons precipitated by Acantharia contribute up to 10 mol % of the combined amount of carbonate and celestite shells precipitated in the Indian Ocean. The data suggest that the distribution of the concentration of strontium in the global ocean is governed by the different modes of deep-water formation in the Southern Ocean and North Atlantic. The formation of Antarctic bottom waters from strontium-rich, upwelled deep waters forms a southern end member contrasted with the strontium depleted North Atlantic deep water. The difference in strontium concentrations and Sr/Ca ratios of the different water masses reported here is maintained by precipitation, export, and dissolution of CaCO3 and SrSO4. These preformed strontium concentrations correlate linearly with nitrate and phosphate concentrations in the Indian Ocean, but this correlation is weaker in low latitudes, where the mixotrophic lifestyle of Acantharia allows them to thrive in nutrient-depleted environments

    Large mass-independent sulphur isotope anomalies link stratospheric volcanism to the Late Ordovician mass extinction

    Get PDF
    Volcanic eruptions are thought to be a key driver of rapid climate perturbations over geological time, such as global cooling, global warming, and changes in ocean chemistry. However, identification of stratospheric volcanic eruptions in the geological record and their causal link to the mass extinction events during the past 540 million years remains challenging. Here we report unexpected, large mass-independent sulphur isotopic compositions of pyrite with Δ33S of up to 0.91‰ in Late Ordovician sedimentary rocks from South China. The magnitude of the Δ33S is similar to that discovered in ice core sulphate originating from stratospheric volcanism. The coincidence between the large Δ33S and the first pulse of the Late Ordovician mass extinction about 445 million years ago suggests that stratospheric volcanic eruptions may have contributed to synergetic environmental deteriorations such as prolonged climatic perturbations and oceanic anoxia, related to the mass extinction

    Spatial and Temporal Dynamics of Dissolved Organic Carbon, Chlorophyll, Nutrients, and Trace Metals in Maritime Antarctic Snow and Snowmelt

    Get PDF
    Despite scientific interest in the investigation of biogeochemical changes in meltwaters of the Antarctic Peninsula, we still lack an understanding of the seasonal dynamics and release of dissolved and particulate carbon, nutrients, as well as trace metals from Antarctic snowpacks. Harsh conditions, lack of appreciation of the heterogeneity of the environment, as well as logistical constraints during fieldwork mean there is great demand for more detailed and comprehensive research. Therefore, a unique, comprehensive study of snowpack biogeochemistry was performed in the Ryder Bay area of the Antarctic Peninsula during the entire 2016/2017 melt season. Two-hundred snowpack and snowmelt samples were collected throughout the campaign, to quantify for the first time, seasonal dynamics and export of dissolved carbon, in-vivo chlorophyll, nutrient, and trace metals from Antarctic snowpack in various locations. Our study uncovered the importance of environmental heterogeneity with respect to the export of solutes and carbon. A distinctive split in the temporal dynamics of solute export was found, suggesting that some solutes are rapidly delivered to coastal environments early in the summer whilst others are delivered more gradually throughout it. Coastal, low elevation snowpacks were identified as “power plants” of microbial activity, playing an important role in the regulation of land-ocean fluxes of labile carbon and bio-limiting macro- and micro-nutrients. We also found that multiannual snow residing deep below the surface can further contribute to biogeochemical enrichment of coastal ecosystems. Additionally, inland snowpack have been identified as a store for nutrients, dissolved organic carbon and chlorophyll. Lastly, we show that a number of factors (environmental characteristics, geochemical heterogeneity, and internal biogeochemical processes in snow) make simple snowpack surveys insufficient for the prediction of biogeochemical fluxes carried by snowmelt runoff into the marine environment. A return to significant fieldwork-based research in Antarctica is therefore necessary to advance our knowledge of the complex biogeochemical processes occurring there. This study provides crucial data and process insights for more accurate predictions of how changing climate will influence the Antarctic carbon cycle and the globally important Southern Ocean ecosystem
    corecore