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Water chemistry reveals a significant decline in
coral calcification rates in the southern Red Sea
Zvi Steiner 1, Alexandra V. Turchyn 1, Eyal Harpaz2 & Jacob Silverman3

Experimental and field evidence support the assumption that global warming and ocean

acidification is decreasing rates of calcification in the oceans. Local measurements of coral

growth rates in reefs from various locations have suggested a decline of ~6–10% per decade

since the late 1990's. Here, by measuring open water strontium-to-alkalinity ratios along the

Red Sea, we show that the net contribution of hermatypic corals to the CaCO3 budget of the

southern and central Red Sea declined by ~100% between 1998 and 2015 and remained low

between 2015 and 2018. Measured differences in total alkalinity of the Red Sea surface water

indicate a 26 ± 16% decline in total CaCO3 deposition rates along the basin. These findings

suggest that coral reefs of the southern Red Sea are under severe stress and demonstrate the

strength of geochemical measurements as cost-effective indicators for calcification trends on

regional scales.
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Absorption of excess anthropogenic CO2 from the atmo-
sphere into the oceans is reducing seawater pH and thus
the carbonate ion concentration, making it increasingly

more difficult for calcareous organisms to build their skeletons1,2.
The anticipated decrease in CaCO3 production with increasing
atmospheric CO2 and resulting ocean acidification will sig-
nificantly impact many aspects of the marine carbon cycle and
lead to the deterioration of shallow-water-carbonate platform
habitats, such as coral reefs3,4. The effect of ocean acidification
may be particularly hard for coral reefs as corals, which form the
foundation of their carbonate framework will not be able to
produce CaCO3 at a rate that will equal or offset the sum of
mechanically and biologically mediated erosive processes4.

The adverse effects of ocean acidification on hermatypic coral
calcification, as well as whole coral reef community calcification
has been demonstrated experimentally in numerous laboratory
experiments5 and two controlled field experiments6,7. These
findings have motivated numerous studies of coral reef com-
munity metabolism, which established a baseline for our
understanding of temporal variability in photosynthesis,
respiration, calcification and CaCO3 dissolution rates of whole
reef communities8–10. For example, measurements of commu-
nity calcification made over two annual cycles in the Eilat
Nature Reserve Reef, northern Red Sea, have been used to
develop a gross coral reef calcification rate equation, which is a
function of live coral coverage, reef-water temperature and
aragonite saturation11. Using this equation, together with
modelled values of sea surface temperature and aragonite
saturation for different future levels of atmosphere CO2, it has
been predicted that many tropical coral reefs might not be able
to maintain their calcareous frameworks by the middle of the
21st century, when atmospheric CO2 is expected to double
relative to its pre-industrial level4. Studies of community
metabolism in the Great Barrier Reef compared rates of calci-
fication measured in the past few years with similar measure-
ments conducted 3–4 decades ago, which together suggested an
alarming decline in net calcification rates, and confirmed the
predicted decline according to the Eilat rate equation12,13. In
addition, numerous coral growth records derived from coral
cores taken from live corals in the Great Barrier Reef, Red Sea
and reefs in southeast Asia indicated that growth rates have
been continuously declining since the 1990's, on the order of
~6–10% per decade14–16. In contrast, the same type of data
suggests that coral calcification rates were stable in the decades
preceding 1996 and 1998 in the Florida Keys and the Red Sea,
respectively14,17.

The alarming global decline in the state of coral reefs is
largely due to periods of prolonged thermal stress that are
increasing in frequency and duration, resulting in massive coral
bleaching and mortality18, in addition to local stress factors,
such as coral mining and eutrophication19,20. This global
decline in the state of coral reefs warrants careful monitoring of
these important ecosystems. Assessment of the state of coral
reefs has traditionally relied mostly on annual visual commu-
nity structure surveys21. This method provides a wealth of
information regarding the state of corals reef communities and
allows the exploration of the processes that influence the state
of the communities, yet the spatial coverage of these surveys is
limited and they are very labour intensive. A different approach
to assess the state of whole coral reef ecosystems is to measure
changes in the water chemistry induced by biological activity,
where precipitation of CaCO3 by reef organisms (mainly her-
matypic corals) induces changes in seawater total alkalinity
(AT)22,23. Furthermore, it has been proposed that this method
can be applied to ocean basins or oceanic regions with a high
prevalence of coral reefs, where changes in AT, in conjunction

with strontium and calcium concentrations that diverge from
conservation with salinity can be used to determine the relative
contributions of corals and calcareous plankton to their CaCO3

budget24. In the oceans, AT is typically conservative with sea-
water salinity, which itself changes mostly due to evaporation
and/or precipitation. Upward divergence from the oceanic
conservation of AT relative to salinity in surface waters indi-
cates net dissolution of CaCO3 or independent production of
AT, while downward divergence of AT relative to salinity in
surface waters indicates net CaCO3 precipitation or indepen-
dent uptake of AT. Thus, an increase in the slope of AT vs.
salinity relative to a baseline slope in a defined oceanic region
could indicate a decrease in net calcification. If the AT vs.
salinity slope is higher than the slope of oceanic conservation,
then it would indicate that the system has become a net source
of AT; being a source of alkalinity could indicate the dissolution
of CaCO3 or an external supply of AT, such as riverine or
groundwater input25–27.

The physical oceanography of the Red Sea features several
characteristics which make it an ideal basin for ocean-chemistry-
based exploration and monitoring of the CaCO3 cycle. It is a long
and narrow basin located in a hyper arid region with no sig-
nificant river discharge or terrestrial runoff28. The only significant
source of water to the Red Sea is surface water entering through
the Straits of Bab-el-Mandeb, connecting the Red Sea with the
Gulf of Aden and Indian Ocean29,30. The shallow sill at Bab-el-
Mandeb prevents intermediate and deep Indian Ocean waters
from entering the Red Sea29. Red Sea intermediate and deep
waters form in the northern Red Sea and in the Gulfs of Aqaba
and Suez, and are isolated from global ocean deep waters30,31. As
a result, the Red Sea deep water mass has an unusually high
temperature of 21 °C, maintaining supersaturation with respect to
calcite and aragonite at all depths32. Upper thermocline water in
the south and central Red Sea is warmer throughout the year and
less salty than the deep and intermediate waters of the Red Sea,
suppressing deep water formation and ventilation in these
regions. The Red Sea is of particular interest in the context of
ocean acidification and climate change since it is home to the
world’s longest continuous coral reef. The coral reefs of the
southern Red Sea flourish under high summer time temperatures,
which are generally above the thermal stress threshold considered
to cause bleaching33.

A Rayleigh distillation model has been previously used to
calculate the contribution of coral reefs and calcareous plankton
to carbonate production along the Red Sea, Gulf of Aden and
north-western Indian Ocean based on data collected in
October–November 199824. These calculations provide a baseline
for long-term monitoring of changes in calcification on a basin
scale, which we are now able to compare with new data collected
along the Red Sea during December 2015–January 2016, April
2016 and March 2018 (Fig. 1). Comparing these new and old
data, we find that changes in the salinity-normalized concentra-
tions of strontium and AT along the north-south bisecting axis of
the Red Sea indicate a 26 ± 16% decline in net calcification rates
between 1998 and 2015. This is a dramatic decrease for a region
that has been previously declared a refuge for corals and coral
reefs in an age of global warming and ocean acidification3,33. It
seems that most of this decrease can be attributed to a reduction
in net coral reef calcification rates in the tropical Red Sea while
plankton calcification rates have also decreased. In addition, it is
possible that dissolution in coral reefs increased as a result of
coral bleaching, eutrophication and/or ocean acidification. Much
of this region is presently inaccessible to researchers due to
ongoing conflicts taking place in Yemen and Somalia, hence this
large scale change could not be detected through standard visual
surveys of coral reefs. This study demonstrates the strength of
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geochemical tools in establishing baselines and following trends
to determine environmental status on a large spatial and temporal
scale.

Results and Discussion
Changes in the CaCO3 budget of the Red Sea. The Red Sea
region as a whole is a significant producer of CaCO3, and the bulk
of this CaCO3 is not subsequently dissolved; as a result, the Red
Sea region is a net sink for CaCO3. We can see this net sink of
CaCO3 in the gradual decrease in salinity-normalized total
alkalinity (nAT) in the Red Sea surface water as it flows north-
ward from the straits of Bab-el-Mandeb (Fig. 2). The nAT of the
Red Sea deep water is lower than surface water nAT at the site of
deep water formation, an observation that has been attributed to
inorganic precipitation of CaCO3 on the surfaces of dust grains
and re-suspended or deposited sediment grains34. Comparison of

data collected during 2015–2018 with data collected in previous
cruises along the Red Sea24,35 show that uptake of AT along the
Red Sea transect decreased in 2015 relative to 1998 (Fig. 2). The
nAT of surface water samples collected in April 2016 and March
2018 is similar to the December 2015 data. The spatial distribu-
tion of this uptake also changed, AT uptake decreased sig-
nificantly in the southern Red Sea and western Gulf of Aden since
1998 and possibly increased from 20°N northward (Fig. 2), as
the gap between the data sets becomes smaller in that region. The
uptake of AT in the Red Sea is equivalent to the difference
between the slope of AT-to-salinity in the Red Sea and the Indian
Ocean (IO) surface waters. In 1998, the slope of AT-to-salinity
between the IO and Red Sea was 26.6 ± 2.0, while in 2015 and
2018 the slope was 35.8 ± 2.4 (Fig. 3). Assuming that the resi-
dence time of water in the Red Sea did not change significantly
between 1998 and 2015, the decrease in AT uptake in 2015
relative to 1998 is 26 ± 16%. The Indian Ocean AT-to-salinity
slope in 1998 and 2015–2018 remained unchanged with a value of
61.9 ± 4.0. The residence time of surface waters in the Red Sea is
on the order of 1 year36, hence each of the profiles presented in
Figs. 2 and 3 represents a yearly cycle and should be sensitive to
interannual variability.

The full data set suggests that the 2015 surface water data is
reliable for calculations of calcification rates in the central and
southern Red Sea but not in the northern Red Sea. Concentra-
tions of calcium and nAT (ΔCa+2: ΔnAT) decrease at a ratio of
0.55 ± 0.11 mole mole−1 along the southern and central Red Sea,
in agreement with predicted ratios in precipitation of CaCO3.
However, in the northern Red Sea (north of 24.1°N), roughly one
mole of calcium is added per two moles of nAT lost (ΔCa+2:
ΔnAT=−0.53 ± 0.08 mole mole−1). Such ratios are characteristic
of hydrothermal activity and reactions between basaltic minerals
and seawater37. Mineralogical transformations of fresh basalts
and mixing of seawater with hydrothermal fluids replace calcium
by magnesium, acting as a net source of dissolved calcium and
sink of dissolved magnesium for the overlying seawater38–40.
Strontium concentrations, on the other hand, are typically not
significantly altered relative to chlorinity during high temperature
circulation41. It was previously reported that surface water from
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Fig. 1 Location map of surface water samples collected for the present study. The map was created using Ocean Data View 5.079. Supplementary Table 1
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Gulf of Aden (West of 48°E). Analytical uncertainties in the present and
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this region is slightly depleted in magnesium, an observation
which further supports that hydrothermal/basalt alteration
reactions are important24. The presence of hot brines in the
deepest parts of the Red Sea40, as well as the overall relative
narrowness of the basin, suggests that both sources are possible
contributors of calcium. Unlike the northern Red Sea, mixing of
brine waters into surface waters of the central and southern parts
of the Red Sea is of minor importance due to the development of
a steep density gradient between the surface and deep waters.

Relative contributions of corals and calcareous plankton. Each
group of calcifying organisms precipitates CaCO3 with a typical
tendency to incorporate strontium in the mineral lattice42 (KD,
the distribution coefficient, is the ratio between a trace element
and the major element in a solid versus the fluid it precipitates
from). Corals precipitate aragonite with a slight preference
for strontium over calcium (Kreef

D = 1.04 ± 0.0343). The distribu-
tion coefficient of strontium in aragonite precipitated by red and
green algae as well as inorganic aragonite are also high42,44.
Common calcareous plankton, on the other hand, typically pre-
cipitate strontium-poor CaCO3. For example, planktonic for-
aminifera precipitate low Mg-calcite with typical strontium
distribution coefficient of KD= 0.12, while pteropods precipitate
aragonite with KD= 0.12, and coccolithophorids precipitate low
Mg-calcite with a typical KD ≈ 0.342,45,46. Taking all these calci-
fying plankton together, we can estimate an “average” distribu-
tion coefficient of strontium in planktonic CaCO3 precipitated in
the Red Sea, Kplankton

D , is 0.17 ± 0.03, similar to the average value
for biotic low magnesium calcite in general47. Because this
number is significantly different from the distribution coefficient
for strontium precipitated in corals (Kreef

D = 1.04 ± 0.03), by
measuring the variations in strontium, calcium and alkalinity in
the seawater along a transect we can determine the relative

contributions of corals and calcareous plankton to the CaCO3

budget of a defined oceanic region.
The average distribution coefficient of strontium in all CaCO3

precipitated along a surface water flow trajectory can be
calculated using the Rayleigh distillation equation24

Rw

R0
¼ f KD�1 ð1Þ

where Rw is the Sr/Ca or Sr/AT ratio in each surface seawater
sample; R0 is the Sr/Ca or Sr/AT ratio in a reference sample and f
is the fraction of salinity normalized calcium or AT lost relative to
the reference sample.

In the present work, we focus on changes in AT relative to
salinity and Sr/AT ratios since the relative changes in the
concentrations of dissolved calcium were very small. If salinity
normalized concentrations of calcium, AT and strontium change
only due to precipitation of CaCO3, it is reasonable to assume a
two-end-member system in which one end member is coral
aragonite and the other is calcareous plankton, each with a typical
distribution coefficient for strontium in its precipitated carbonate
(much lower for calcareous plankton than for coral aragonite).
Under this assumption, the relative net contributions of plankton
(Xplankton, which includes benthic precipitators of calcite) and
corals (1−Xplankton, which includes inorganic aragonite) to the
CaCO3 budget in the Red Sea can be expressed by Eq. (1) and
solved using a water mass chemical balance24:

KD ¼ Kplankton
D � Xplankton þ Kreef

D � 1� Xplankton

� �
ð2Þ

An important underlying assumption of the Rayleigh distilla-
tion model is that there is no back reaction48, i.e. no dissolution of
CaCO3. Thus, Eq. (1) is not typically suitable for assessments of
the CaCO3 cycle in deeper water masses or in shallow water
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environments where inorganic or biogenic dissolution, respec-
tively may play an important role in their CaCO3 budget. In the
Red Sea, deep water CaCO3 dissolution is not prevalent because
of the high temperature and saturation states of CaCO3 minerals.
In-situ dissolution of CaCO3 at the site of its formation, as part of
the diurnal cycle, does not measurably modify the chemistry of
the water far away from the reef as long as dissolution is balanced
by accretion, hence this natural process is normally transparent in
our calculations. An additional underlying assumption of the
model is that all calcification processes occurring within a body of
water are reflected by its chemical composition, i.e. laterally
mixed. The Red Sea has a channel like structure and a single
significant entry point, ensuring that nearly all water found in the
surface layer of the northern Red Sea originated from the strait of
Bab-el-Mandeb, connecting the Red Sea with the Gulf of Aden
and the Indian Ocean. Within this channel, a series of mesoscale
eddies vigorously mixes the upper water column on the
longitudinal axis30, as reflected by the zonation of many physical
and biological parameters49.

The average distribution coefficient of strontium in the
precipitated CaCO3, as calculated using the Rayleigh distillation
model for the south and central Red Sea, declined from 0.36 ±
0.20 in 1998 to 0.11 ± 0.06 in 2015 and 0.11 ± 0.07 in March 2018
(Fig. 4). The earlier value has large margins of uncertainty when
calculated based on Sr/AT ratios alone, yet it is in excellent
agreement with calculations based on calcium concentrations as
well as long term records of coral and plankton calcification rates
in this region, supporting its accuracy24. In terms of relative
contributions, the 2015 and 2018 average distribution coefficients
for the Red Sea suggest that the current regional CaCO3 cycle is
dominated by planktonic foraminifera and pteropods, while the
earlier average KD suggests that ~20% of the CaCO3 was
precipitated in coral reefs along with possible contributions from
coccolithophores24. These water-chemistry based calculations are

supported by reports of severe coral bleaching along the central
Red Sea coast of Saudi Arabia in 201518,50 and suggest that the
extent of this bleaching event included the southern Red Sea. Our
calculations also suggest that calcification rates of the southern
and central Red Sea corals remain low and that the decrease
represents a prolonged episode rather than a short term event
isolated in 2015. By subtraction, the decrease in total calcification
rates and coral calcification rates of the southern and central Red
Sea suggests that calcification rates of foraminifera and pteropods
decreased by 7.5 ± 7.5%. It should be noted that in any case this
decrease in KD does not mean that all corals are dead in this
region but rather indicates an overall equilibrium between CaCO3

production and dissolution in coral reefs and shallow carbonate
sediments derived from coral reef erosion. Any further decline in
reef calcification rates or increase in dissolution rates should
result in net loss of CaCO3 from the reef framework and
ultimately the degradation and loss of this important habitat.

A difficulty that has to be taken into account when considering
the validity of the Rayleigh distillation model in assessments of
contributions to the CaCO3 cycle is that strontium can be
removed/supplied by additional sources. Hydrothermal activity
does not seem to be significant in this respect since reactions
between seawater and basaltic minerals act in opposite direction
to mixing hydrothermal fluids with seawater, cancelling the
effects of each other41. There are also no significant rivers flowing
into the Red Sea. Acantharia, which are radiolarian precipitating
SrSO4 skeletons may be abundant in the surface mixed layer
throughout the region51. Precipitation of SrSO4 is expected to
remove large amounts of strontium from the water, increasing the
apparent distribution coefficient of strontium, while dissolution
of even small amounts of acantharia may decrease the apparent
distribution coefficient to below zero. Given that seawater is
highly undersaturated with respect to SrSO4

52, its imprint on
profiles of strontium concentrations depends on the export
efficiency of the shells of these plankton. It was previously shown
that dissolution rates of silicate radiolarians in the undersaturated
water column increase exponentially with increasing tempera-
tures53 and it is likely that the same is true for the far more
soluble acantharia shells. Absence of apparent contribution by
precipitation/dissolution of acantharia shells to the Sr/Ca ratios of
the Red Sea in the southern and central Red Sea data, suggest that
the vast majority of the acantharia dissolve within the warm
surface mixed layer of this region. For the 1998 data set it was
shown that there is excellent agreement between calculated
precipitation rates of corals and calcareous plankton with satellite
and sediment core data from this region, suggesting that the
relative contribution of acantharia was not significant for our
budget calculations24.

Long term trends in the Gulf of Aqaba. The northernmost Gulf
of Aqaba is the only region in the Red Sea system in which long-
term monitoring of the ecology and chemistry of the marine
environment has been conducted routinely since the 1990's.
Located at the terminus of the Red Sea surface water flow, water
chemistry in the Gulf of Aqaba sums the processes occurring
along the Red Sea with a likely overrepresentation of local pro-
cesses occurring within the Gulf. In the northern Gulf of Aqaba,
coral cover and the density of colonies declined significantly
during the 1990's and reached an alarming low in 200454. This
decline was considered to be a result of eutrophication due to
nutrient emissions from nearby fish farm activity8,54,55. The state
of the coral reef in Eilat improved after 2004, following reductions
in fish production and ultimate removal of this nutrient source
between 2006 and 200856,57. Changes in the abundance and
species composition of planktonic foraminifera in recent decades
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have also been reported in the Gulf of Aqaba58. Monthly mea-
surements of AT in the northern Gulf of Aqaba suggest a decline
in calcification rates between 1999 and 200459 and relative long-
term stability with seasonal and inter-annual variability since
200834,56. Recorded increase in AT of the surface waters of the
Gulf of Aqaba in the years following 1998, probably reflects the
local decline in the state of coral reefs in the northern Gulf of
Aqaba54 as well as decreased calcification rates along the main
basin of the Red Sea14,60.

Factors contributing to reduced calcification rates. Three main
processes are most likely to contribute to reduced calcification
rates along the southern Red Sea: Decreased carbonate ion con-
centration and aragonite saturation due to absorption of
anthropogenic CO2 by the surface waters61. Increased tempera-
tures in this already very warm region14,50,62,63. Eutrophication,
which may support colonization of hard substrates by macro
algae and displacement of reef building corals, as well as the
increase in boring activity (biogenic dissolution of CaCO3) by
organisms that inhabit the CaCO3 framework of coral reefs19,64

and the bacterially mediated dissolution of carbonate sediments,
which is also affected by ocean acidification20,65,66. In the fol-
lowing discussion, we shall see that all three processes probably
contribute to the observed decline.

Rates of coral calcification strongly depend on the saturation
state of aragonite11. The same is probably also true for calcite
precipitation by foraminifera67. The partial pressure of CO2 in
surface waters of the Red Sea have been shown to be near
equilibrium with atmospheric CO2

68, hence the ecosystem should
quickly respond to changes in atmospheric CO2. At the
temperature-salinity range in the study area, increased tempera-
tures increase the aragonite saturation state by 0.03 units-per-
degree Celsius and may either increase or decrease biotic
calcification rates, depending on the physiological response of
organisms to temperatures. A null hypothesis of no change in live
coral cover suggests that the increase in pCO2 and warming of
0.25 °C63 between 1998 and 2015 should have decreased net coral
calcification rates along the Red Sea by 4.4%, based on the
observed response of a coral reef community in the Gulf of Aqaba
to seasonal changes in the saturation state of aragonite and
temperature (ref. 11; Supplementary Fig. 1). Therefore, the
dramatic decline in net coral calcification rates in the southern
and central Red Sea as inferred from Figs. 2 to 4 must result from
additional processes.

Reduced rates of coral calcification and reduced abundance of
large corals since 1998 has been previously reported for several
Red Sea reefs14,60. It was suggested that this decline in coral
growth rates was a result of a long series of warm years in the
central Red Sea14. In 2015, global temperatures were particularly
high and widespread coral bleaching events were reported
globally, including sites in the central Red Sea, Persian Gulf
and Indian Ocean18,50,62. In the Red Sea, sea surface temperatures
in 2015 were 0.5 °C higher than the long term average, yet while
2015 was warmer than average for this region, it was not the
warmest on record in recent years63. The bleaching event clearly
affected the metabolic state of Red Sea corals yet coral bleaching is
a very rapid process, which is unlikely to induce a gradual decline
in coral growth as documented for the central Red Sea14. It
therefore seems that while bleaching played a major role in
decreasing coral calcification rates, change in calcification rates
started earlier. Data from April 2016 and March 2018 show that
recovery from the 2015 bleaching event has yet to happen.

A third possible contributor to the observed decline in
southern Red Sea net calcification rates is increased erosion.
Increased nutrient availability and subsequent growth of epilithic

algae, increases the activity of boring organism and dissolution
rates of CaCO3 in coral reefs69,70 as well as bacterially mediated
dissolution of carbonate sediments and rubble20. For example,
between 1960–1970 and 2009, the night-time dissolution rate of a
reef in One Tree Island increased from 31 to 71% of the gross
calcification rates, a three-fold increase in absolute terms13, likely
driven by warming and ocean acidification.

Much like the Gulf of Aqaba, the central and southern parts of
the Red Sea are increasingly threatened by overfishing, urban
development and eutrophication71. The effect of eutrophication
on trophic levels in central Red Sea coral reefs has been clearly
documented72 and should impact the whole community growth
and calcification rates. Support for this claim comes from the
average regional distribution coefficient of strontium, suggesting
that coccolithophores calcification rates have also decreased.
Calcification rates by coccolithophores are less likely to respond
dramatically to small changes in temperature or pCO2 and more
likely to be affected by eutrophication and pollution as these give
rise to increased abundance of faster growing species73,74.

Methods
Sampling. During 27/12/2015–3/1/2016, 18–21/4/2016 and 23–31/03/2018 sea-
water samples were collected from the sea surface by bucket off the deck of the
Container Ships ZIM Qingdao and Yokahama during their passage northward
from the Arabian Sea through the Gulf of Aden and the Red Sea on their way to the
Mediterranean (Fig. 1). Water samples were kept in refrigeration in 1.5 L gas tight
plastic bottles until they were subsampled at the Israel Oceanographic and Lim-
nological Research (IOLR) lab in Haifa, Israel within 3 days from collection of the
last sample. Water samples for total alkalinity (AT), dissolved inorganic carbon
(DIC) and density were kept in brown glass bottles and samples for Sr, Ca and Na
analysis were kept in polypropylene tubes. Samples for AT, DIC and density were
measured within the first week after arriving at IOLR.

Carbonate chemistry. Total alkalinity was determined at IOLR by potentiometric
Gran titration of ~22 g subsamples, filtered through Whatman GFF 0.45 µm filters
using a Metrohm Titrino 785 Titrameter with a temperature corrected pH probe
and HCl 0.05 N. AT was calculated from the intercepts and slopes of the linear
regression fits between measured pHs and corresponding acid volumes in the pH
range 3.8 and 3.375. The acid concentration was calibrated using seawater CRMs
from A. Dickson’s lab. The precision of these measurements was ± 2 µmol kg−1

(two measurements per sample). The DIC was extracted from 1.6 mL sub-samples
by acidifying them with phosphoric acid (H3PO4, 10%) using an automated CO2

extractor and delivery system (AERICA by MARIANDA) and high grade N2

(99.999%) as a carrier gas connected on line with a LiCor 6252 IR CO2 analyser.
Measurements were calibrated using seawater Dickson CRMs. The repeatability of
the measurements was 1.7 ± 1.3 µmol kg−1 (mean ± STD of all measurement errors,
n= 28).

Salinity. Salinity was calculated from density measurements conducted at IOLR
using an Anton-Paar density and sound velocity metre, model DSA 5000M.
Together with the recorded temperature at the time of the measurements the
results were input into the international equation of state for seawater76,77. The
roots of the resulting polynomial with salinity as the unknown variable were cal-
culated using the Newton–Raphson method. Validation of this method was done
with a Dickson CRM and IAPSO standard seawater producing an accuracy of
better than ±0.003.

Major elements. Concentrations of calcium, strontium and sodium were mea-
sured at the University of Cambridge by inductively coupled plasma optical
emission spectroscopy using an Agilent Technologies 5100 ICP-OES. Samples were
diluted with 0.1 N HNO3 at 1:71 ratio and analysed in duplicates by sample
standard bracketing. Initial calibration lines were obtained by running different
dilutions of IAPSO seawater batch P157. For accuracy calibrations, IAPSO sea-
water was spiked with a 42Ca–48Ca spike; calcium was separated by ion chroma-
tography by running the samples through Sr spec resin followed by AG50W-X8
resin and measured by Thermo Scientific Triton Plus thermal ionization mass
spectrometry (TIMS). Sr/Ca ratios and the concentrations of strontium were ver-
ified by running a standard with a known Sr/Ca ratio, prepared by Mervyn Greaves
and utilized in many previous studies at the laboratory of Harry Elderfield. For this
study, we used the Ca422.673, Sr421.552 and Na468.821 spectral lines. 1σ standard
deviation of the analyses was 0.12% and 0.11% for Ca/Na and Sr/Na ratios,
respectively (n= 33). All calcium and strontium measurements were normalized to
salinity of 35 by assuming sodium concentrations of 468.5 mmol kg−1 at that
salinity78.
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Data availability
All data supporting the findings of this study is provided in the online Supplementary
Information.
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