72 research outputs found

    Developing the Biomolecular Screening Facility at the EPFL into the Chemical Biology Screening Platform for Switzerland

    Get PDF
    The Biomolecular Screening Facility (BSF) is a multidisciplinary laboratory created in 2006 at the Ecole Polytechnique Federale de Lausanne (EPFL) to perform medium and high throughput screening in life sciences-related projects. The BSF was conceived and developed to meet the needs of a wide range of researchers, without privileging a particular biological discipline or therapeutic area. The facility has the necessary infrastructure, multidisciplinary expertise and flexibility to perform large screening programs using small interfering RNAs (siRNAs) and chemical collections in the areas of chemical biology, systems biology and drug discovery. In the framework of the National Centres of Competence in Research (NCCR) Chemical Biology, the BSF is hosting 'ACCESS', the Academic Chemical Screening Platform of Switzerland that provides the scientific community with chemical diversity, screening facilities and know-how in chemical genetics. In addition, the BSF started its own applied research axes that are driven by innovation in thematic areas related to preclinical drug discovery and discovery of bioactive probes

    A new class of cleavable fluorescent nucleotides: synthesis and optimization as reversible terminators for DNA sequencing by synthesis

    Get PDF
    Fluorescent 2′-deoxynucleotides containing a protecting group at the 3′-O-position are reversible terminators enabling array-based DNA sequencing by synthesis (SBS) approaches. Herein, we describe the synthesis of a new family of 3′-OH unprotected cleavable fluorescent 2′-deoxynucleotides and their evaluation as reversible terminators for high-throughput DNA SBS strategies. In this first version, all four modified nucleotides bearing a cleavable disulfide Alexa Fluor® 594 dye were assayed for their ability to act as a reversible stop for the incorporation of the next labeled base. Their use in SBS leaded to a signal-no signal output after successive addition of each labeled nucleotide during the sequencing process (binary read-out). Solid-phase immobilized synthetic DNA target sequences were used to optimize the method that has been applied to DNA polymerized colonies or clusters obtained by in situ solid-phase amplification of fragments of genomic DNA template

    BTA, a novel reagent for DNA attachment on glass and efficient generation of solid-phase amplified DNA colonies

    Get PDF
    The tricarboxylate reagent benzene-1,3,5-triacetic acid (BTA) was used to attach 5′-aminated DNA primers and templates on an aminosilanized glass surface for subsequent generation of DNA colonies by in situ solid-phase amplification. We have characterized the derivatized surfaces for the chemical attachment of oligonucleotides and evaluate the properties relevant for the amplification process: surface density, thermal stability towards thermocycling, functionalization reproducibility and storage stability. The derivatization process, first developed for glass slides, was then adapted to microfabricated glass channels containing integrated fluidic connections. This implementation resulted in an important reduction of reaction times, consumption of reagents and process automation. Innovative analytical methods for the characterization of attached DNA were developed for assessing the surface immobilized DNA content after amplification. The results obtained showed that the BTA chemistry is compatible and suitable for forming highly dense arrays of DNA colonies with optimal surface coverage of about 10 million colonies/cm2 from the amplification of initial single-template DNA molecules immobilized. We also demonstrate that the dsDNA colonies generated can be quantitatively processed in situ by restriction enzymes digestion. DNA colonies generated using the BTA reagent can be used for further sequence analysis in an unprecedented parallel fashion for low-cost genomic studie

    BTA, a novel reagent for DNA attachment on glass and efficient generation of solid-phase amplified DNA colonies

    Get PDF
    The tricarboxylate reagent benzene-1,3,5-triacetic acid (BTA) was used to attach 5′-aminated DNA primers and templates on an aminosilanized glass surface for subsequent generation of DNA colonies by in situ solid-phase amplification. We have characterized the derivatized surfaces for the chemical attachment of oligonucleotides and evaluate the properties relevant for the amplification process: surface density, thermal stability towards thermocycling, functionalization reproducibility and storage stability. The derivatization process, first developed for glass slides, was then adapted to microfabricated glass channels containing integrated fluidic connections. This implementation resulted in an important reduction of reaction times, consumption of reagents and process automation. Innovative analytical methods for the characterization of attached DNA were developed for assessing the surface immobilized DNA content after amplification. The results obtained showed that the BTA chemistry is compatible and suitable for forming highly dense arrays of DNA colonies with optimal surface coverage of about 10 million colonies/cm(2) from the amplification of initial single-template DNA molecules immobilized. We also demonstrate that the dsDNA colonies generated can be quantitatively processed in situ by restriction enzymes digestion. DNA colonies generated using the BTA reagent can be used for further sequence analysis in an unprecedented parallel fashion for low-cost genomic studies

    Digital holographic microscopy: a quantitative label-free microscopy technique for phenotypic screening

    Get PDF
    Digital Holographic Microscopy (DHM) is a label-free imaging technique allowing visualization of transparent cells with classical imaging cell culture plates. The quantitative DHM phase contrast image provided is related both to the intracellular refractive index and to cell thickness. DHM is able to distinguish cellular morphological changes on two representative cell lines (HeLa and H9c2) when treated with doxorubicin and chloroquine, two cytotoxic compounds yielding distinct phenotypes. We analyzed parameters linked to cell morphology and to the intracellular content in endpoint measurements and further investigated them with timelapse recording. The results obtained by DHM were compared with other optical label-free microscopy techniques, namely Phase Contrast, Differential Interference Contrast and Transport of Intensity Equation (reconstructed from three bright-field images). For comparative purposes, images were acquired in a common 96-well plate format on the different motorized microscopes. In contrast to the other microscopies assayed, images generated with DHM can be easily quantified using a simple automatized on-the-fly analysis method for discriminating the different phenotypes generated in each cell line. The DHM technology is suitable for the development of robust and unbiased image-based assays

    Human interleukin-5 expressed in Escherichia coli: assignment of the disulfide bridges of the purified unglycosylated protein

    Get PDF
    AbstractHuman interleukin-5 is a homodimer: each subunit contains two cysteine residues that form two inter-subunit disulfide bonds. The topology of the disulfides in recombinant human interleukin-5 produced in Escherichia coli was studied by proteolytic digestion and peptide mapping. Disulfide linked peptides containing cysteine 42 linked to cysteine 84 were isolated. This indicated that cysteine 42 and 84 of one subunit were linked in an antiparallel manner to cysteines 84 and 42 of the other subunit

    Antiviral Screen against Canine Distemper Virus-Induced Membrane Fusion Activity.

    Get PDF
    Canine distemper virus (CDV), a close relative of the human pathogen measles virus (MeV), is an enveloped, negative sense RNA virus that belongs to the genus Morbillivirus and causes severe diseases in dogs and other carnivores. Although the vaccination is available as a preventive measure against the disease, the occasional vaccination failure highlights the importance of therapeutic alternatives such as antivirals against CDV. The morbilliviral cell entry system relies on two interacting envelope glycoproteins: the attachment (H) and fusion (F) proteins. Here, to potentially discover novel entry inhibitors targeting CDV H, F and/or the cognate receptor: signaling lymphocyte activation molecule (SLAM) proteins, we designed a quantitative cell-based fusion assay that matched high-throughput screening (HTS) settings. By screening two libraries of small molecule compounds, we successfully identified two membrane fusion inhibitors (F2736-3056 and F2261-0043). Although both inhibitors exhibited similarities in structure and potency with the small molecule compound 3G (an AS-48 class morbilliviral F-protein inhibitor), F2736-3056 displayed improved efficacy in blocking fusion activity when a 3G-escape variant was employed. Altogether, we present a cell-based fusion assay that can be utilized not only to discover antiviral agents against CDV but also to dissect the mechanism of morbilliviral-mediated cell-binding and cell-to-cell fusion activity

    Screening-based approach to discover effective platinum-based chemotherapies for cancers with poor prognosis

    Get PDF
    Drug combinations are extensively used to treat cancer and are often selected according to complementary mechanisms. Here, we describe a cell-based high-throughput screening assay for identification of synergistic combinations between broadly applied platinum-based chemotherapeutics and drugs from a library composed of 1280 chemically and pharmacologically diverse (mostly FDA approved) compounds. The assay was performed on chemoresistant cell lines derived from lung (A549) and pancreatic (PANC-1) carcinoma, where platinum-based combination regimens are currently applied though with limited success. The synergistic combinations identified during the screening were validated by synergy quantification using the combination index method and via high content fluorescent microscopy analysis. New promising synergistic combinations discovered using this approach include compounds currently not used as anticancer drugs, such as cisplatin or carboplatin with hycanthone and cisplatin with spironolactone in pancreatic carcinoma, and carboplatin and deferoxamine in non-small cell lung cancer. Strong synergy between cisplatin or carboplatin and topotecan in PANC-1 cells, compared to A549 cells, suggests that this combination, currently used in lung cancer treatment regimens, could be applied to pancreatic carcinoma as well. Several drugs used to treat diseases other than cancer, including pyrvinium pamoate, auranofin, terfenadine and haloprogin, showed strong cytotoxicity on their own and synergistic interactions with platinum drugs. This study demonstrates that non-obvious drug combinations that would not be selected based on complementary mechanisms can be identified via high-throughput screening

    Automated multi-parameter measurement of cardiomyocytes dynamics with digital holographic microscopy

    Get PDF
    Compounds tested during drug development may have adverse effects on the heart; therefore all new chemical entities have to undergo extensive preclinical assessment for cardiac liability. Conventional intensity-based imaging techniques are not robust enough to provide detailed information for cell structure and the captured images result in low-contrast, especially to cell with semi-transparent or transparent feature, which would affect the cell analysis. In this paper we show, for the first time, that digital holographic microscopy (DHM) integrated with information processing algorithms automatically provide dynamic quantitative phase profiles of beating cardiomyocytes. We experimentally demonstrate that relevant parameters of cardiomyocytes can be obtained by our automated algorithm based on DHM phase signal analysis and used to characterize the physiological state of resting cardiomyocytes. Our study opens the possibility of automated quantitative analysis of cardiomyocyte dynamics suitable for further drug safety testing and compounds selection as a new paradigm in drug toxicity screen

    Repositioning approved drugs for the treatment of problematic cancers using a screening approach

    Get PDF
    Advances in treatment strategies together with an earlier diagnosis have considerably increased the average survival of cancer patients over the last four decades. Nevertheless, despite the growing number of new antineoplastic agents introduced each year, there is still no adequate therapy for problematic malignancies such as pancreatic, lung and stomach cancers. Consequently, it is important to ensure that existing drugs used to treat other types of cancers, and potentially other diseases, are not overlooked when searching for new chemotherapy regimens for these problematic cancer types. We describe a screening approach that identifies chemotherapeutics for the treatment of lung and pancreatic cancers, based on drugs already approved for other applications. Initially, the 1280 chemically and pharmacologically diverse compounds from the Prestwick Chemical Library (R) (PCL) were screened against A549 (lung cancer) and PANC-1 (pancreatic carcinoma) cells using the PrestoBlue fluorescent-based cell viability assay. More than 100 compounds from the PCL were identified as hits in one or both cell lines (80 of them, being drugs used to treat diseases other than cancer). Selected PCL hits were further evaluated in a dose-response manner. Promising candidates for repositioning emanating from this study include antiparasitics, cardiac glycosides, as well as the anticancer drugs vorinostat and topotecan
    • …
    corecore