418 research outputs found

    Access to thrombolysis for non-resident and resident stroke patients-a registry-based comparative study from Berlin

    Get PDF
    Objectives Stroke can happen to people away from home. It is unknown whether non-resident and resident stroke patients have equal access to thrombolysis. Materials and methods Consecutive patients cared for by the Stroke Emergency Mobile between 2011 and 2016 after prompting suspicion of acute stroke during the emergency call were included in our registry. Patients were categorized as residents or non-residents based on their main address. Clinical characteristics, thrombolysis rates, and time intervals from symptom onset/last seen well to alarm and to thrombolysis were compared between groups adjusting for age, pre-stroke modified Rankin Scale (mRS) score, and National Institutes of Health Stroke Scale (NIHSS) score. Results Of 4,254 patients for whom a stroke dispatch was activated, 2,451 had ischemic or hemorrhagic strokes, including 73 non-residents. Non-resident stroke patients were younger (median 69.4 vs. 76.6 years, p < 0.001), had less pre-stroke disability (mRS ≥ 2:17.8 vs. 47.5%, p < 0.001) and less severe strokes (median NIHSS 4 vs. 5, p = 0.02). Thrombolysis rates were higher in non-residents (30.9 vs. 22.0% of ischemic stroke patients, p = 0.04) and emergency calls were made faster (symptom onset/last-seen-well-to-alarm time 35 vs. 144 min, p = 0.04). A lower proportion of non-residents had unknown time of symptom onset (21.9 vs. 46.4%, p < 0.001). For patients with known time of symptom onset, thrombolysis rates, and prehospital delays were similar among non-residents and residents. Conclusion In this study, non-resident stroke patients had higher rates of thrombolysis than residents. This may be explained by a lower proportion of patients with unknown time of symptom onset

    Transmission of an ICME Sheath Into the Earth's Magnetosheath and the Occurrence of Traveling Foreshocks

    Get PDF
    The transmission of a sheath region driven by an interplanetary coronal mass ejection into the Earth's magnetosheath is studied by investigating in situ magnetic field measurements upstream and downstream of the bow shock during an ICME sheath passage on 15 May 2005. We observe three distinct intervals in the immediate upstream region that included a southward magnetic field component and are traveling foreshocks. These traveling foreshocks were observed in the quasi-parallel bow shock that hosted backstreaming ions and magnetic fluctuations at ultralow frequencies. The intervals constituting traveling foreshocks in the upstream survive transmission to the Earth's magnetosheath, where their magnetic field, and particularly the southward component, was significantly amplified. Our results further suggest that the magnetic field fluctuations embedded in an ICME sheath may survive the transmission if their frequency is below similar to 0.01 Hz. Although one of the identified intervals was coherent, extending across the ICME sheath and being long-lived, predicting ICME sheath magnetic fields that may transmit to the Earth's magnetosheath from the upstream at L1 observations has ambiguity. This can result from the strong spatial variability of the ICME sheath fields in the longitudinal direction, or alternatively from the ICME sheath fields developing substantially within the short time it takes the plasma to propagate from L1 to the bow shock. This study demonstrates the complex interplay ICME sheaths have with the Earth's magnetosphere when passing by the planet.Peer reviewe

    Transmission of an ICME Sheath Into the Earth's Magnetosheath and the Occurrence of Traveling Foreshocks

    Get PDF
    The transmission of a sheath region driven by an interplanetary coronal mass ejection into the Earth's magnetosheath is studied by investigating in situ magnetic field measurements upstream and downstream of the bow shock during an ICME sheath passage on 15 May 2005. We observe three distinct intervals in the immediate upstream region that included a southward magnetic field component and are traveling foreshocks. These traveling foreshocks were observed in the quasi-parallel bow shock that hosted backstreaming ions and magnetic fluctuations at ultralow frequencies. The intervals constituting traveling foreshocks in the upstream survive transmission to the Earth's magnetosheath, where their magnetic field, and particularly the southward component, was significantly amplified. Our results further suggest that the magnetic field fluctuations embedded in an ICME sheath may survive the transmission if their frequency is below similar to 0.01 Hz. Although one of the identified intervals was coherent, extending across the ICME sheath and being long-lived, predicting ICME sheath magnetic fields that may transmit to the Earth's magnetosheath from the upstream at L1 observations has ambiguity. This can result from the strong spatial variability of the ICME sheath fields in the longitudinal direction, or alternatively from the ICME sheath fields developing substantially within the short time it takes the plasma to propagate from L1 to the bow shock. This study demonstrates the complex interplay ICME sheaths have with the Earth's magnetosphere when passing by the planet.Peer reviewe

    Outer radiation belt and inner magnetospheric response to sheath regions of coronal mass ejections : a statistical analysis

    Get PDF
    The energetic electron content in the Van Allen radiation belts surrounding the Earth can vary dramatically at several timescales, and these strong electron fluxes present a hazard for spacecraft traversing the belts. The belt response to solar wind driving is, however, largely unpredictable, and the direct response to specific large-scale heliospheric structures has not been considered previously. We investigate the immediate response of electron fluxes in the outer belt that are driven by sheath regions preceding interplanetary coronal mass ejections and the associated wave activity in the inner magnetosphere. We consider the events recorded from 2012 to 2018 in the Van Allen Probes era to utilise the energy- and radial-distance-resolved electron flux observations of the twin spacecraft mission. We perform a statistical study of the events by using the superposed epoch analysis in which the sheaths are superposed separately from the ejecta and resampled to the same average duration. Our results show that the wave power of ultra-low frequency Pc5 and electromagnetic ion cyclotron waves, as measured by a Geostationary Operational Environmental Satellite (GOES), is higher during the sheath than during the ejecta. However, the level of chorus wave power, as measured by the Van Allen Probes, remains approximately the same due to similar substorm activity during the sheath and ejecta. Electron flux enhancements are common at low energies ( 4). It is distinctive that the depletion extends to lower energies at larger distances. We suggest that this L-shell and energy-dependent depletion results from the magnetopause shadowing that dominates the losses at large distances, while the wave-particle interactions dominate closer to the Earth. We also show that non-geoeffective sheaths cause significant changes in the outer belt electron fluxes.Peer reviewe

    Consumer Knowledge about Dietary Relevance of Fruits and Vegetables: A Study Involving Participants from Portugal and France

    Get PDF
    Fruits and vegetables are recommended as low-calorie foods that contribute to the proper intake of necessary micronutrients, macronutrients, and bioactive compounds with health benefits. However, the recommendations for the dietary intake of these foods fail to be attained in most European countries. For this reason, promoting more knowledge about the health effects of fruits and vegetables is essential to decrease the incidence of chronic diseases. This study was conducted to investigate the knowledge of the health benefits of fruits and vegetables among the population of Portugal and France. The present work involved a questionnaire survey of 639 participants (257 from Portugal and 382 from France). The results revealed that most participants were young females (68.9%) with good education (76%) and an average weight range. They consumed a varied diet (57%) but had body dissatisfaction (63.2%). The respondents had good knowledge about the health effects of fruits and vegetables. However, the French population knew more about the theme than the Portuguese. Portuguese individuals were more likely to have incomplete information. Gender and education significantly influenced knowledge levels, with females and highly educated individuals demonstrating greater understanding. Dissatisfaction with body weight drives individuals to seek nutrition information. This investigation enhances our comprehension of the factors that affect knowledge of vegetable and fruit consumption among young adults in Portugal and France. Moreover, it highlights the importance of implementing focused educational programs to enhance nutrition literacy, particularly for less-aware demographic groups. Going forward, a more in-depth analysis of these factors could assist in creating more efficient strategies to encourage healthier dietary habits and improve nutrition literacy among these communities.info:eu-repo/semantics/publishedVersio

    ULF Wave Transmission Across Collisionless Shocks : 2.5D Local Hybrid Simulations

    Get PDF
    We study the interaction of upstream ultralow frequency (ULF) waves with collisionless shocks by analyzing the outputs of 11 2D local hybrid simulation runs. Our simulated shocks have Alfvenic Mach numbers between 4.29 and 7.42 and their theta BN angles are 15 degrees, 30 degrees, 45 degrees, and 50 degrees. The ULF wave foreshocks develop upstream of all of them. The wavelength and the amplitude of the upstream waves exhibit a complex dependence on the shock's MA and theta BN. The wavelength positively correlates with both parameters, with the dependence on theta BN being much stronger. The amplitude of the ULF waves is proportional to the product of the reflected beam velocity and density, which also depend on MA and theta BN. The interaction of the ULF waves with the shock causes large-scale (several tens of upstream ion inertial lengths) shock rippling. The properties of the shock ripples are related to the ULF wave properties, namely their wavelength and amplitude. In turn, the ripples have a large impact on the ULF wave transmission across the shock because they change local shock properties (theta BN, strength), so that different sections of the same ULF wavefront encounter shock with different characteristics. Downstream fluctuations do not resemble the upstream waves in terms the wavefront extension, orientation or their wavelength. However, some features are conserved in the Fourier spectra of downstream compressive waves that present a bump or flattening at wavelengths approximately corresponding to those of the upstream ULF waves. In the transverse downstream spectra, these features are weaker.Peer reviewe
    • …
    corecore