8 research outputs found

    Environmental Tobacco Smoke During the Early Postnatal Period of Mice Interferes With Brain 18 F-FDG Uptake From Infancy to Early Adulthood – A Longitudinal Study

    Get PDF
    Exposure to environmental tobacco smoke (ETS) is associated with high morbidity and mortality, mainly in childhood. Our aim was to evaluate the effects of postnatal ETS exposure in the brain 2-deoxy-2-[18F]-fluoro-D-glucose (18F-FDG) uptake of mice by positron emission tomography (PET) neuroimaging in a longitudinal study. C57BL/6J mice were exposed to ETS that was generated from 3R4F cigarettes from postnatal day 3 (P3) to P14. PET analyses were performed in male and female mice during infancy (P15), adolescence (P35), and adulthood (P65). We observed that ETS exposure decreased 18F-FDG uptake in the whole brain, both left and right hemispheres, and frontal cortex in both male and female infant mice, while female infant mice exposed to ETS showed decreased 18F-FDG uptake in the cerebellum. In addition, all mice showed reduced 18F-FDG uptake in infancy, compared to adulthood in all analyzed VOIs. In adulthood, ETS exposure during the early postnatal period decreased brain 18F-FDG uptake in adult male mice in the cortex, striatum, hippocampus, cingulate cortex, and thalamus when compared to control group. ETS induced an increase in 18F-FDG uptake in adult female mice when compared to control group in the brainstem and cingulate cortex. Moreover, male ETS-exposed animals showed decreased 18F-FDG uptake when compared to female ETS-exposed in the whole brain, brainstem, cortex, left amygdala, striatum, hippocampus, cingulate cortex, basal forebrain and septum, thalamus, hypothalamus, and midbrain. The present study shows that several brain regions are vulnerable to ETS exposure during the early postnatal period and these effects on 18F-FDG uptake are observed even a long time after the last exposure. This study corroborates our previous findings, strengthening the idea that exposure to tobacco smoke in a critical period interferes with brain development of mice from late infancy to early adulthood

    Synthesis and Evaluation of [F-18]FEtLos and [F-18]AMBF(3)Los as Novel F-18-Labelled Losartan Derivatives for Molecular Imaging of Angiotensin II Type 1 Receptors

    Get PDF
    Losartan is widely used in clinics to treat cardiovascular related diseases by selectively blocking the angiotensin II type 1 receptors (AT(1)Rs), which regulate the renin-angiotensin system (RAS). Therefore, monitoring the physiological and pathological biodistribution of AT(1)R using positron emission tomography (PET) might be a valuable tool to assess the functionality of RAS. Herein, we describe the synthesis and characterization of two novel losartan derivatives PET tracers, [F-18]fluoroethyl-losartan ([F-18]FEtLos) and [F-18]ammoniomethyltrifluoroborate-losartan ([F-18]AMBF(3)Los). [F-18]FEtLos was radiolabeled by F-18-fluoroalkylation of losartan potassium using the prosthetic group 2-[F-18]fluoroethyl tosylate; whereas [F-18]AMBF(3)Los was prepared following an one-step F-18-F-19 isotopic exchange reaction, in an overall yield of 2.7 +/- 0.9% and 11 +/- 4%, respectively, with high radiochemical purity (>95%). Binding competition assays in AT(1)R-expressing membranes showed that AMBF(3)Los presented an almost equivalent binding affinity (K-i 7.9 nM) as the cold reference Losartan (K-i 1.5 nM), unlike FEtLos (K-i 2000 nM). In vitro and in vivo assays showed that [F-18]AMBF(3)Los displayed a good binding affinity for AT(1)R-overexpressing CHO cells and was able to specifically bind to renal AT(1)R. Hence, our data demonstrate [F-18]AMBF(3)Los as a new tool for PET imaging of AT(1)R with possible applications for the diagnosis of cardiovascular, inflammatory and cancer diseases

    Lung aeration in experimental malaria-associated acute respiratory distress syndrome by SPECT/CT analysis.

    No full text
    Malaria-associated acute respiratory distress syndrome (ARDS) is an inflammatory disease causing alveolar-pulmonary barrier lesion and increased vascular permeability characterized by severe hypoxemia. Computed tomography (CT), among other imaging techniques, allows the morphological and quantitative identification of lung lesions during ARDS. This study aims to identify the onset of malaria-associated ARDS development in an experimental model by imaging diagnosis. Our results demonstrated that ARDS-developing mice presented decreased gaseous exchange and pulmonary insufficiency, as shown by the SPECT/CT technique. The pulmonary aeration disturbance in ARDS-developing mice on the 5th day post infection was characterized by aerated tissues decrease and nonaerated tissue accumulation, demonstrating increased vascular permeability and pleural effusion. The SPECT/CT technique allowed the early diagnosis in the experimental model, as well as the identification of the pulmonary aeration. Notwithstanding, despite the fact that this study contributes to better understand lung lesions during malaria-associated ARDS, further imaging studies are needed

    Histoplasma capsulatum Cell Wall beta-Glucan Induces Lipid Body Formation through CD18, TLR2, and Dectin-1 Receptors: Correlation with Leukotriene B(4) Generation and Role in HIV-1 Infection

    No full text
    Histoplasma capsulatum (Hc) is a facultative, intracellular parasite of worldwide significance. Infection with Hc produces a broad spectrum of diseases and may progress to a life-threatening systemic disease, particularly in individuals with HIV infection. Resolution of histoplasmosis is associated with the activation of cell-mediated immunity, and leukotriene B(4) plays an important role in this event. Lipid bodies (LBs) are increasingly being recognized as multifunctional organelles with roles in inflammation and infection. In this study, we investigated LB formation in histoplasmosis and its putative function in innate immunity. LB formation in leukocytes harvested from Hc-infected C57BL/6 mice peaks on day 2 postinfection and correlates with enhanced generation of lipid mediators, including leukotriene B(4) and PGE(2). Pretreatment of leukocytes with platelet-activating factor and BLT1 receptor antagonists showed that both lipid mediators are involved in cell signaling for LB formation. Alveolar leukocytes cultured with live or dead Hc also presented an increase in LB numbers. The yeast alkali-insoluble fraction 1, which contains mainly beta-glucan isolated from the Hc cell wall, induced a dose- and time-dependent increase in LB numbers, indicating that beta-glucan plays a signaling role in LB formation. In agreement with this hypothesis, beta-glucan-elicited LB formation was inhibited in leukocytes from 5-LO(-/-), CD18(low) and TLR2(-/-) mice, as well as in leukocytes pretreated with anti-Dectin-1 Ab. Interestingly, human monocytes from HIV-1-infected patients failed to produce LBs after beta-glucan stimulation. These results demonstrate that Hc induces LB formation, an event correlated with eicosanoid production, and suggest a role for these lipid-enriched organelles in host defense during fungal infection. The Journal of Immunology, 2009, 182: 4025-4035.FAPESP Fundacao de Amparo a Pesquisa do Estado de Sao Paulo[02/12856-2]CNPq Conselho Nacional de Desenvolvimento Cientifico e TccnologicoFundacao de Apoio Ensino (FAEPA)Pesquisa e Assistencia (FAEPA)Faculdade de Medicina de Ribeirao PretoUniversidade de Sao Paulo (USP

    Protection conferred by heterologous vaccination against tuberculosis is dependent on the ratio of CD4(+)/CD4(+) Foxp3(+) cells

    No full text
    CD4(+) Foxp3(+) regulatory T cells inhibit the production of interferon-?, which is the major mediator of protection against Mycobacterium tuberculosis infection. In this study, we evaluated whether the protection conferred by three different vaccines against tuberculosis was associated with the number of spleen and lung regulatory T cells. We observed that after homologous immunization with the 65 000 molecular weight heat-shock protein (hsp 65) DNA vaccine, there was a significantly higher number of spleen CD4(+) Foxp3(+) cells compared with non-immunized mice. Heterologous immunization using bacillus Calmette Guerin (BCG) to prime and DNA-hsp 65 to boost (BCG/DNA-hsp 65) or BCG to prime and culture filtrate proteins (CFP)-CpG to boost (BCG/CFP-CpG) induced a significantly higher ratio of spleen CD4(+)/CD4(+) Foxp3(+) cells compared with non-immunized mice. In addition, the protection conferred by either the BCG/DNA-hsp 65 or the BCG/CFP-CpG vaccines was significant compared with the DNA-hsp 65 vaccine. Despite the higher ratio of spleen CD4(+)/CD4(+) Foxp3(+) cells found in BCG/DNA-hsp 65-immunized or BCG/CFP-CpG-immunized mice, the lungs of both groups of mice were better preserved than those of DNA-hsp 65-immunized mice. These results confirm the protective efficacy of BCG/DNA-hsp 65 and BCG/CFP-CpG heterologous prime-boost vaccines and the DNA-hsp 65 homologous vaccine. Additionally, the prime-boost regimens assayed here represent a promising strategy for the development of new vaccines to protect against tuberculosis because they probably induce a proper ratio of CD4(+) and regulatory (CD4(+) Foxp3(+)) cells during the immunization regimen. In this study, this ratio was associated with a reduced number of regulatory cells and no injury to the lungs.Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP)Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP) [2007/02695-5

    scFv-Anti-LDL(-)-Metal-Complex Multi-Wall Functionalized-Nanocapsules as a Promising Tool for the Prevention of Atherosclerosis Progression

    No full text
    Atherosclerosis can be originated from the accumulation of modified cholesterol-rich lipoproteins in the arterial wall. The electronegative LDL, LDL(-), plays an important role in the pathogenesis of atherosclerosis once this cholesterol-rich lipoprotein can be internalized by macrophages, contributing to the formation of foam cells, and provoking an immune-inflammatory response. Herein, we engineered a nanoformulation containing highly pure surface-functionalized nanocapsules using a single-chain fragment variable (scFv) reactive to LDL(-) as a ligand and assessed whether it can affect the LDL(-) uptake by primary macrophages and the progression of atherosclerotic lesions in Ldlr−/− mice. The engineered and optimized scFv-anti-LDL(-)-MCMN-Zn nanoformulation is internalized by human and murine macrophages in vitro by different endocytosis mechanisms. Moreover, macrophages exhibited lower LDL(-) uptake and reduced mRNA and protein levels of IL1B and MCP1 induced by LDL(-) when treated with this new nanoformulation. In a mouse model of atherosclerosis employing Ldlr−/− mice, intravenous administration of scFv-anti-LDL(-)-MCMN-Zn nanoformulation inhibited atherosclerosis progression without affecting vascular permeability or inducing leukocytes-endothelium interactions. Together, these findings suggest that a scFv-anti-LDL(-)-MCMN-Zn nanoformulation holds promise to be used in future preventive and therapeutic strategies for atherosclerosis
    corecore