151 research outputs found

    Prenatal Tobacco Exposure Shortens Telomere Length in Children

    Get PDF
    Introduction: Preliminary evidence suggests a possible association between prenatal tobacco exposure and telomere length in children. This study was conducted to investigate whether maternal smoking during pregnancy was associated with telomere shortening in their children and whether prenatal and childhood exposure to environmental tobacco had any impact on this association. Methods: This is a population-representative study on the association between prenatal tobacco exposure and telomere length in children. Ninety-eight Hong Kong Chinese children aged under 15 years with prenatal tobacco exposure and 98 age- and gender-matched controls were recruited from a population health study with stratified random sampling. Results: Telomere length in children with prenatal tobacco exposure was significantly shorter than in those with no exposure (mean T/S ratio = 24.9 [SD = 8.58] in exposed vs. 28.97 [14.15] in control groups; P = 0.02). A negative dose-response relationship was observed between the T/S ratio and tobacco exposure duration: the longer the duration of maternal smoking in pregnancy, the shorter the child's telomere length. The association between the child's telomere length and prenatal tobacco exposure remained significant after considering the influence of family socioeconomic status and exposure to environmental tobacco smoke during pregnancy and childhood. Conclusions: Prenatal tobacco exposure was associated with telomere shortening in children. As this may impose significant health impacts through fetal genetic programming, more efforts should be made to reduce fetal tobacco exposure by educating pregnant women to not smoke and motivating smokers to quit in early pregnancy. Implications: As reflected by telomere shortening, prenatal tobacco exposure in children can cause premature aging and increased health risks, which we suggest is entirely preventable. Not smoking during pregnancy or quitting smoking is critical to improving the health outcome of our future generations as prenatal tobacco exposure may affect children's biological programming. © The Author 2016. Published by Oxford University Press on behalf of the Society for Research on Nicotine and Tobacco. All rights reserved.postprin

    Compatibility of neutrino DIS data and global analyses of parton distribution functions

    Full text link
    Neutrino\antineutrino deep inelastic scattering (DIS) data provide useful constrains for the flavor decomposition in global fits of parton distribution functions (PDF). The smallness of the cross-sections requires the use of nuclear targets in the experimental setup. Understanding the nuclear corrections is, for this reason, of utmost importance for a precise determination of the PDFs. Here, we explore the nuclear effects in the neutrino\antineutrino-nucleon DIS by comparing the NuTeV, CDHSW, and CHORUS cross-sections to the predictions derived from the latest parton distribution functions and their nuclear modifications. We obtain a good description of these data and find no apparent disagreement between the nuclear effects in neutrino DIS and those in charged lepton DIS. These results also indicate that further improvements in the knowledge of the nuclear PDFs could be obtained by a more extensive use of these sets of neutrino data.Comment: 16 pages, 8 figure

    Public knowledge in Hong Kong towards cardiopulmonary resuscitation

    Get PDF
    published_or_final_versio

    A Comparison Between Chinese Children Infected with Coronavirus Disease-2019 and with Severe Acute Respiratory Syndrome 2003

    Get PDF
    OBJECTIVES: To compare the clinical and laboratory features of severe acute respiratory syndrome 2003 (SARS) and coronavirus disease 2019 (COVID-19) in two Chinese pediatric cohorts, given that the causative pathogens and are biologically similar. , STUDY DESIGN: This is a cross-sectional study reviewing paediatric patients with SARS (n = 43) and COVID-19 (n=244) who were admitted to the Princess Margaret Hospital in Hong Kong and Wuhan Children's Hospital in Wuhan, respectively. Demographics, hospital length of stay, clinical and laboratory features were compared RESULTS: Overall, 97.7% of patients with SARS and 85.2% of patients with COVID-19 had epidemiological associations with known cases. Significantly more patients with SARS developed fever, chills, myalgia, malaise, coryza, sore throat, sputum production, nausea, headache, and dizziness than patients COVID-19. No SARS patients were asymptomatic at the time of admission. 29.1% and 20.9% COVID-19 patients were asymptomatic on admission and throughout their hospital stay, respectively. More SARS patients required oxygen supplementation than COVID-19 patients (18.6 vs. 4.7%, P = 004). Only 1.6% COVID-19 and 2.3% SARS patients required mechanical ventilation. Leukopenia (37.2% vs. 18.6%, p=0.008), lymphopenia (95.4% versus 32.6%, p<0.01), and thrombocytopenia (41.9% vs 3.8%, p<0.001) were significantly more common in SARS than COVID-19 patients. The duration between positive and negative nasopharyngeal aspirate and the length in hospital stay were similar in COVID-19 patients regardless of whether they were asymptomatic or symptomatic, suggesting a similar duration of viral shedding. CONCLUSIONS: Children with COVID-19 were less symptomatic and had more favorable hematological findings than children with SARS

    Clinical Characteristics and Transmission of COVID-19 in Children and Youths During 3 Waves of Outbreaks in Hong Kong

    Get PDF
    IMPORTANCE: Schools were closed intermittently across Hong Kong to control the COVID-19 outbreak, which led to significant physical and psychosocial problems among children and youths. OBJECTIVE: To compare the clinical characteristics and sources of infection among children and youths with COVID-19 during the 3 waves of outbreaks in Hong Kong in 2020. DESIGN, SETTING AND PARTICIPANTS: This cross-sectional study involved children and youths aged 18 years or younger with COVID-19 in the 3 waves of outbreaks from January 23 through December 2, 2020. Data were analyzed from December 2020 through January 2021. MAIN OUTCOMES AND MEASURES: Demographic characteristics, travel and contact histories, lengths of hospital stay, and symptoms were captured through the central electronic database. Individuals who were infected without recent international travel were defined as having domestic infections. RESULTS: Among 397 children and youths confirmed with COVID-19 infections, the mean (SD) age was 9.95 (5.34) years, 220 individuals (55.4%) were male, and 154 individuals (38.8%) were asymptomatic. There were significantly more individuals who were infected without symptoms in the second wave (59 of 118 individuals [50.0%]) and third wave (94 of 265 individuals [35.5%]) than in the first wave (1 of 14 individuals [7.1%]) (P = .001). Significantly fewer individuals who were infected in the second and third waves, compared with the first wave, had fever (first wave: 10 individuals [71.4%]; second wave: 22 individuals [18.5%]; third wave: 98 individuals [37.0%]; P < .001) or cough (first wave: 6 individuals [42.9%]; second wave: 15 individuals [12.7%]; third wave: 52 individuals [19.6%]; P = .02). Among all individuals, 394 individuals (99.2%) had mild illness. One patient developed chilblains (ie, COVID toes), 1 patient developed multisystem inflammatory syndrome in children, and 1 patient developed post–COVID-19 autoimmune hemolytic anemia. In all 3 waves, 204 patients with COVID-19 (51.4%) had domestic infections. Among these individuals, 186 (91.2%) reported having a contact history with another individual with COVID-19, of which most (183 individuals [90.0%]) were family members. In the third wave, 18 individuals with domestic infections had unknown contact histories. Three schoolmates were confirmed with COVID-19 on the same day and were reported to be close contacts. CONCLUSIONS AND RELEVANCE: his cross-sectional study found that nearly all children and youths with COVID-19 in Hong Kong had mild illness. These findings suggest that household transmission was the main source of infection for children and youths with domestic infections and that the risk of being infected at school was small

    Pulmonary Function and Incident Bronchitis and Asthma in Children: A Community-Based Prospective Cohort Study

    Get PDF
    BACKGROUND: Previous studies revealed that reduction of airway caliber in infancy might increase the risks for wheezing and asthma. However, the evidence for the predictive effects of pulmonary function on respiratory health in children was still inconsistent. METHODS: We conducted a population-based prospective cohort study among children in 14 Taiwanese communities. There were 3,160 children completed pulmonary function tests in 2007 and follow-up questionnaire in 2009. Poisson regression models were performed to estimate the effect of pulmonary function on the development of bronchitis and asthma. RESULTS: After adjustment for potential confounders, pulmonary function indices consistently showed protective effects on respiratory diseases in children. The incidence rate ratios of bronchitis and asthma were 0.86 (95% CI 0.79-0.95) and 0.91 (95% CI 0.82-0.99) for forced expiratory volume in 1 second (FEV₁). Similar adverse effects of maximal mid-expiratory flow (MMEF) were also observed on bronchitis (RR = 0.73, 95% CI 0.67-0.81) and asthma (RR = 0.85, 95% CI 0.77-0.93). We found significant decreasing trends in categorized FEV₁ (p for trend = 0.02) and categories of MMEF (p for trend = 0.01) for incident bronchitis. Significant modification effects of traffic-related air pollution were noted for FEV₁ and MMEF on bronchitis and also for MMEF on asthma. CONCLUSIONS: Children with high pulmonary function would have lower risks on the development of bronchitis and asthma. The protective effect of high pulmonary function would be modified by traffic-related air pollution exposure

    Impact of Metabolic Regulators on the Expression of the Obesity Associated Genes FTO and NAMPT in Human Preadipocytes and Adipocytes

    Get PDF
    FTO and NAMPT/PBEF/visfatin are thought to play a role in obesity but their transcriptional regulation in adipocytes is not fully understood. In this study, we evaluated the transcriptional regulation of FTO and NAMPT in preadipocytes and adipocytes by metabolic regulators.We assessed FTO mRNA expression during human adipocyte differentiation of Simpson-Golabi-Behmel syndrome (SGBS) cells and primary subcutaneous preadipocytes in vitro and evaluated the effect of the metabolic regulators glucose, insulin, dexamethasone, IGF-1 and isoproterenol on FTO and NAMPT mRNA expression in SGBS preadipocytes and adipocytes. FTO mRNA levels were not significantly modulated during adipocyte differentiation. Also, metabolic regulators had no impact on FTO expression in preadipocytes or adipocytes. In SGBS preadipocytes NAMPT expression was more than 3fold induced by dexamethasone and isoproterenol and 1.6fold by dexamethasone in adipocytes. Complete glucose restriction caused an increase in NAMPT mRNA expression by more than 5fold and 1.4fold in SGBS preadipocytes and adipocytes, respectively.FTO mRNA expression is not significantly affected by differentiation or metabolic regulators in human adipocytes. The stimulation of NAMPT expression by dexamethasone, isoproterenol and complete glucose restriction may indicate a regulation of NAMPT by metabolic stress, which was more pronounced in preadipocytes compared to mature adipocytes

    The high energy neutrino cross-section in the Standard Model and its uncertainty

    Full text link
    Updated predictions are presented for high energy neutrino and antineutrino charged and neutral current cross-sections within the conventional DGLAP formalism of NLO QCD using modern PDF fits. PDF uncertainties from model assumptions and parametrization bias are considered in addition to the experimental uncertainties. Particular attention is paid to assumptions and biases which could signal the need for extension of the conventional formalism to include effects such as ln(1/x) resummation or non-linear effects of high gluon density.Comment: 15 pages, 13 figures, 2 tables (REVTeX4); clarifying comments and link to tabulated cross sections at http://www-pnp.physics.ox.ac.uk/~cooper/neutrino/ added; to appear in JHE

    Ghrelin Indirectly Activates Hypophysiotropic CRF Neurons in Rodents

    Get PDF
    Ghrelin is a stomach-derived hormone that regulates food intake and neuroendocrine function by acting on its receptor, GHSR (Growth Hormone Secretagogue Receptor). Recent evidence indicates that a key function of ghrelin is to signal stress to the brain. It has been suggested that one of the potential stress-related ghrelin targets is the CRF (Corticotropin-Releasing Factor)-producing neurons of the hypothalamic paraventricular nucleus, which secrete the CRF neuropeptide into the median eminence and activate the hypothalamic-pituitary-adrenal axis. However, the neural circuits that mediate the ghrelin-induced activation of this neuroendocrine axis are mostly uncharacterized. In the current study, we characterized in vivo the mechanism by which ghrelin activates the hypophysiotropic CRF neurons in mice. We found that peripheral or intra-cerebro-ventricular administration of ghrelin strongly activates c-fos – a marker of cellular activation – in CRF-producing neurons. Also, ghrelin activates CRF gene expression in the paraventricular nucleus of the hypothalamus and the hypothalamic-pituitary-adrenal axis at peripheral level. Ghrelin administration directly into the paraventricular nucleus of the hypothalamus also induces c-fos within the CRF-producing neurons and the hypothalamic-pituitary-adrenal axis, without any significant effect on the food intake. Interestingly, dual-label immunohistochemical analysis and ghrelin binding studies failed to show GHSR expression in CRF neurons. Thus, we conclude that ghrelin activates hypophysiotropic CRF neurons, albeit indirectly

    Fructose-Bisphophate Aldolase Exhibits Functional Roles between Carbon Metabolism and the hrp System in Rice Pathogen Xanthomonas oryzae pv. oryzicola

    Get PDF
    Fructose-bisphophate aldolase (FbaB), is an enzyme in glycolysis and gluconeogenesis in living organisms. The mutagenesis in a unique fbaB gene of Xanthomonas oryzae pv. oryzicola, the causal agent of rice bacterial leaf streak, led the pathogen not only unable to use pyruvate and malate for growth and delayed its growth when fructose was used as the sole carbon source, but also reduced extracellular polysaccharide (EPS) production and impaired bacterial virulence and growth in rice. Intriguingly, the fbaB promoter contains an imperfect PIP-box (plant-inducible promoter) (TTCGT-N9-TTCGT). The expression of fbaB was negatively regulated by a key hrp regulatory HrpG and HrpX cascade. Base substitution in the PIP-box altered the regulation of fbaB with the cascade. Furthermore, the expression of fbaB in X. oryzae pv. oryzicola RS105 strain was inducible in planta rather than in a nutrient-rich medium. Except other hrp-hrc-hpa genes, the expression of hrpG and hrpX was repressed and the transcripts of hrcC, hrpE and hpa3 were enhanced when fbaB was deleted. The mutation in hrcC, hrpE or hpa3 reduced the ability of the pathogen to acquire pyruvate and malate. In addition, bacterial virulence and growth in planta and EPS production in RΔfbaB mutant were completely restored to the wild-type level by the presence of fbaB in trans. This is the first report to demonstrate that carbohydrates, assimilated by X. oryzae pv. oryzicola, play critical roles in coordinating hrp gene expression through a yet unknown regulator
    corecore