1,060 research outputs found

    Generation of Active Protein Phosphatase 2A Is Coupled to Holoenzyme Assembly

    Get PDF
    Protein phosphatase 2A (PP2A) is a prime example of the multisubunit architecture of protein serine/threonine phosphatases. Until substrate-specific PP2A holoenzymes assemble, a constitutively active, but nonspecific, catalytic C subunit would constitute a risk to the cell. While it has been assumed that the severe proliferation impairment of yeast lacking the structural PP2A subunit, TPD3, is due to the unrestricted activity of the C subunit, we recently obtained evidence for the existence of the C subunit in a low-activity conformation that requires the RRD/PTPA proteins for the switch into the active conformation. To study whether and how maturation of the C subunit is coupled with holoenzyme assembly, we analyzed PP2A biogenesis in yeast. Here we show that the generation of the catalytically active C subunit depends on the physical and functional interaction between RRD2 and the structural subunit, TPD3. The phenotype of the tpd3Δ strain is therefore caused by impaired, rather than increased, PP2A activity. TPD3/RRD2-dependent C subunit maturation is under the surveillance of the PP2A methylesterase, PPE1, which upon malfunction of PP2A biogenesis, prevents premature generation of the active C subunit and holoenzyme assembly by counteracting the untimely methylation of the C subunit. We propose a novel model of PP2A biogenesis in which a tightly controlled activation cascade protects cells from untargeted activity of the free catalytic PP2A subunit

    Hilbert--Schmidt volume of the set of mixed quantum states

    Get PDF
    We compute the volume of the convex N^2-1 dimensional set M_N of density matrices of size N with respect to the Hilbert-Schmidt measure. The hyper--area of the boundary of this set is also found and its ratio to the volume provides an information about the complex structure of M_N. Similar investigations are also performed for the smaller set of all real density matrices. As an intermediate step we analyze volumes of the unitary and orthogonal groups and of the flag manifolds.Comment: 13 revtex pages, ver 3: minor improvement

    A new measurement of antineutrino oscillation with the full detector configuration at Daya Bay

    Full text link
    We report a new measurement of electron antineutrino disappearance using the fully-constructed Daya Bay Reactor Neutrino Experiment. The final two of eight antineutrino detectors were installed in the summer of 2012. Including the 404 days of data collected from October 2012 to November 2013 resulted in a total exposure of 6.9×\times105^5 GWth_{\rm th}-ton-days, a 3.6 times increase over our previous results. Improvements in energy calibration limited variations between detectors to 0.2%. Removal of six 241^{241}Am-13^{13}C radioactive calibration sources reduced the background by a factor of two for the detectors in the experimental hall furthest from the reactors. Direct prediction of the antineutrino signal in the far detectors based on the measurements in the near detectors explicitly minimized the dependence of the measurement on models of reactor antineutrino emission. The uncertainties in our estimates of sin22θ13\sin^{2}2\theta_{13} and Δmee2|\Delta m^2_{ee}| were halved as a result of these improvements. Analysis of the relative antineutrino rates and energy spectra between detectors gave sin22θ13=0.084±0.005\sin^{2}2\theta_{13} = 0.084\pm0.005 and Δmee2=(2.42±0.11)×103|\Delta m^{2}_{ee}|= (2.42\pm0.11) \times 10^{-3} eV2^2 in the three-neutrino framework.Comment: Updated to match final published versio

    Genome-wide association and HLA fine-mapping studies identify risk loci and genetic pathways underlying allergic rhinitis

    Get PDF
    Allergic rhinitis is the most common clinical presentation of allergy, affecting 400 million people worldwide, with increasing incidence in westernized countries1,2. To elucidate the genetic architecture and understand the underlying disease mechanisms, we carried out a meta-analysis of allergic rhinitis in 59,762 cases and 152,358 controls of European ancestry and identified a total of 41 risk loci for allergic rhinitis, including 20 loci not previously associated with allergic rhinitis, which were confirmed in a replication phase of 60,720 cases and 618,527 controls. Functional annotation implicated genes involved in various immune pathways, and fine mapping of the HLA region suggested amino acid variants important for antigen binding. We further performed genome-wide association study (GWAS) analyses of allergic sensitization against inhalant allergens and nonallergic rhinitis, which suggested shared genetic mechanisms across rhinitis-related traits. Future studies of the identified loci and genes might identify novel targets for treatment and prevention of allergic rhinitis
    corecore