10 research outputs found

    Standardization of in vitro digestibility and DIAAS method based on the static INFOGEST protocol

    Get PDF
    Background: The FAO recommends the digestible indispensable amino acid score (DIAAS) as the measure for protein quality, for which the true ileal digestibility needs to be assessed in humans or pigs. However, due to high costs and ethical concerns, the FAO strongly encourages as well the development of validated in vitro methods, which complement the in vivo experiments. Method: Recently, an in vitro workflow, based on the validated static INFOGEST protocol, was developed and compared towards in vivo data. In parallel to the validation with in vivo data, the repeatability and reproducibility of the in vitro protocol were tested in an international ring trial (RT) with the aim to establish an international ISO standard method within the International Dairy Federation (IDF). Five different dairy products (skim milk powder, whole milk powder, whey protein isolate, yoghurt, and cheese) were analyzed in 32 different laboratories from 18 different countries, across 4 continents. Results: in vitro protein digestibilities based on Nitrogen, free R-NH2, and total amino acids as well as DIAAS values were calculated and compared to in vivo data, where available. Conclusion: The in vitro method is suited for quantification of digestibility and will be further implemented to other food matricesinfo:eu-repo/semantics/publishedVersio

    Divergent short-chain fatty acid production and succession of colonic microbiota arise in fermentation of variously-sized wheat bran fractions

    No full text
    Abstract Though the physical structuring of insoluble dietary fiber sources may strongly impact their processing by microbiota in the colon, relatively little mechanistic information exists to explain how these aspects affect microbial fiber fermentation. Here, we hypothesized that wheat bran fractions varying in size would be fermented differently by gut microbiota, which would lead to size-dependent differences in metabolic fate (as short-chain fatty acids; SCFAs) and community structure. To test this hypothesis, we performed an in vitro fermentation assay in which wheat bran particles from a single source were separated by sieving into five size fractions and inoculated with fecal microbiota from three healthy donors. SCFA production, measured by gas chromatography, uncovered size fraction-dependent relationships between total SCFAs produced as well as the molar ratios of acetate, propionate, and butyrate. 16S rRNA sequencing revealed that these size-dependent metabolic outcomes were accompanied by the development of divergent microbial community structures. We further linked these distinct results to subtle, size-dependent differences in chemical composition. These results suggest that physical context can drive differences in microbiota composition and function, that fiber-microbiota interaction studies should consider size as a variable, and that manipulating the size of insoluble fiber-containing particles might be used to control gut microbiome composition and metabolic output

    Among older adults, age-related changes in the stool microbiome differ by HIV-1 serostatusResearch in context

    No full text
    Background: HIV-1 infection and physiological aging are independently linked to elevated systemic inflammation and changes in enteric microbial communities (dysbiosis). However, knowledge of the direct effect of HIV infection on the aging microbiome and potential links to systemic inflammation is lacking. Methods: In a cross-sectional study of older people living with HIV (PLWH) (median age 61.5 years, N = 14) and uninfected controls (median 58 years, n = 22) we compared stool microbiota, levels of microbial metabolites (short-chain fatty acid levels, SCFA) and systemic inflammatory biomarkers by HIV serostatus and age. Findings: HIV and age were independently associated with distinct changes in the stool microbiome. For example, abundances of Enterobacter and Paraprevotella were higher and Eggerthella and Roseburia lower among PLWH compared to uninfected controls. Age-related microbiome changes also differed by HIV serostatus. Some bacteria with inflammatory potential (e.g. Escherichia) increased with age among PLWH, but not controls. Stool SCFA levels were similar between the two groups yet patterns of associations between individual microbial taxa and SCFA levels differed. Abundance of various genera including Escherichia and Bifidobacterium positively associated with inflammatory biomarkers (e.g. soluble Tumor Necrosis Factor Receptors) among PLWH, but not among controls. Interpretation: The age effect on the gut microbiome and associations between microbiota and microbial metabolites or systemic inflammation differed based on HIV serostatus, raising important implications for the impact of therapeutic interventions, dependent on HIV serostatus or age. Keywords: Aging, HIV, Microbiome, Inflammation, Short chain fatty acids (SCFA

    Dietary Fiber Treatment Corrects the Composition of Gut Microbiota, Promotes SCFA Production, and Suppresses Colon Carcinogenesis

    No full text
    Epidemiological studies propose a protective role for dietary fiber in colon cancer (CRC). One possible mechanism of fiber is its fermentation property in the gut and ability to change microbiota composition and function. Here, we investigate the role of a dietary fiber mixture in polyposis and elucidate potential mechanisms using TS4Cre × cAPCl°x468 mice. Stool microbiota profiling was performed, while functional prediction was done using PICRUSt. Stool short-chain fatty acid (SCFA) metabolites were measured. Histone acetylation and expression of SCFA butyrate receptor were assessed. We found that SCFA-producing bacteria were lower in the polyposis mice, suggesting a decline in the fermentation product of dietary fibers with polyposis. Next, a high fiber diet was given to polyposis mice, which significantly increased SCFA-producing bacteria as well as SCFA levels. This was associated with an increase in SCFA butyrate receptor and a significant decrease in polyposis. In conclusion, we found polyposis to be associated with dysbiotic microbiota characterized by a decline in SCFA-producing bacteria, which was targetable by high fiber treatment, leading to an increase in SCFA levels and amelioration of polyposis. The prebiotic activity of fiber, promoting beneficial bacteria, could be the key mechanism for the protective effects of fiber on colon carcinogenesis. SCFA-promoting fermentable fibers are a promising dietary intervention to prevent CRC

    Gut microbiota modulation with long-chain corn bran arabinoxylan in adults with overweight and obesity is linked to an individualized temporal increase in fecal propionate.

    No full text
    BACKGROUND: Variability in the health effects of dietary fiber might arise from inter-individual differences in the gut microbiota's ability to ferment these substrates into beneficial metabolites. Our understanding of what drives this individuality is vastly incomplete and will require an ecological perspective as microbiomes function as complex inter-connected communities. Here, we performed a parallel two-arm, exploratory randomized controlled trial in 31 adults with overweight and class-I obesity to characterize the effects of long-chain, complex arabinoxylan (n = 15) at high supplementation doses (female: 25 g/day; male: 35 g/day) on gut microbiota composition and short-chain fatty acid production as compared to microcrystalline cellulose (n = 16, non-fermentable control), and integrated the findings using an ecological framework. RESULTS: Arabinoxylan resulted in a global shift in fecal bacterial community composition, reduced α-diversity, and the promotion of specific taxa, including operational taxonomic units related to Bifidobacterium longum, Blautia obeum, and Prevotella copri. Arabinoxylan further increased fecal propionate concentrations (p = 0.012, Friedman's test), an effect that showed two distinct groupings of temporal responses in participants. The two groups showed differences in compositional shifts of the microbiota (p ≤ 0.025, PERMANOVA), and multiple linear regression (MLR) analyses revealed that the propionate response was predictable through shifts and, to a lesser degree, baseline composition of the microbiota. Principal components (PCs) derived from community data were better predictors in MLR models as compared to single taxa, indicating that arabinoxylan fermentation is the result of multi-species interactions within microbiomes. CONCLUSION: This study showed that long-chain arabinoxylan modulates both microbiota composition and the output of health-relevant SCFAs, providing information for a more targeted application of this fiber. Variation in propionate production was linked to both compositional shifts and baseline composition, with PCs derived from shifts of the global microbial community showing the strongest associations. These findings constitute a proof-of-concept for the merit of an ecological framework that considers features of the wider gut microbial community for the prediction of metabolic outcomes of dietary fiber fermentation. This provides a basis to personalize the use of dietary fiber in nutritional application and to stratify human populations by relevant gut microbiota features to account for the inconsistent health effects in human intervention studies. TRIAL REGISTRATION: Clinicaltrials.gov, NCT02322112 , registered on July 3, 2015. Video Abstract
    corecore