39 research outputs found

    A threatened species index for Australian birds

    Get PDF
    Quantifying species population trends is crucial for monitoring progress towards global conservation targets, justifying investments, planning targeted responses and raising awareness about threatened species. Many global indicators are slow in response and report on common species, not on those at greatest risk of extinction. Here we develop a Threatened Species Index as a dynamic tool for tracking annual changes in Australia's imperiled birds. Based on the Living Planet Index method and containing more than 17,000 time series for 65 bird taxa surveyed systematically, the index at its second iteration shows an average reduction of 59% between 1985 and 2016, and 44% between 2000 and 2016. Decreases seem most severe for shorebirds and terrestrial birds and least severe for seabirds. The index provides a potential means for measuring performance against the Convention on Biological Diversity's Aichi Target 12, enabling governments, agencies and the public to observe changes in threatened species

    Mapping species distributions: A comparison of skilled naturalist and lay citizen science recording

    Get PDF
    To assess the ability of traditional biological recording schemes and lay citizen science approaches to gather data on species distributions and changes therein, we examined bumblebee records from the UK’s national repository (National Biodiversity Network) and from BeeWatch. The two recording approaches revealed similar relative abundances of bumblebee species but different geographical distributions. For the widespread common carder (Bombus pascuorum), traditional recording scheme data were patchy, both spatially and temporally, reflecting active record centre rather than species distribution. Lay citizen science records displayed more extensive geographic coverage, reflecting human population density, thus offering better opportunities to account for recording effort. For the rapidly spreading tree bumblebee (Bombus hypnorum), both recording approaches revealed similar distributions due to a dedicated mapping project which overcame the patchy nature of naturalist records. We recommend, where possible, complementing skilled naturalist recording with lay citizen science programmes to obtain a nation-wide capability, and stress the need for timely uploading of data to the national repository

    Using ideal distributions of the time since habitat was disturbed to build metrics for evaluating landscape condition

    Full text link
    Developing a standardized approach to measuring the state of biodiversity in landscapes undergoing disturbance is crucial for evaluating and comparing change across different systems, assessing ecosystem vulnerability and the impacts of destructive activities, and helping direct species recovery actions. Existing ecosystem metrics of condition fail to acknowledge that a particular community could be in multiple states, and the distribution of states could worsen or improve when impacted by a disturbance process, depending on how far the current landscape distribution of states diverges from pre‐anthropogenic impact baseline conditions. We propose a way of rapidly assessing regional‐scale condition in ecosystems where the distribution of age classes representing increasing time since last disturbance is suspected to have diverged from an ideal benchmark reference distribution. We develop two metrics that (1) compare the observed mean time since last disturbance with an expected mean and (2) quantify the summed shortfall of vegetation age‐class frequencies relative to a reference age‐class distribution of time since last disturbance. We demonstrate the condition metrics using two case studies: (1) fire in threatened southwestern Australian proteaceaous mallee‐heath and (2) impacts of disturbance (fire and logging) in the critically endangered southeastern Australian mountain ash Eucalyptus regnans forest on the yellow‐bellied glider Petaurus australis. We explore the effects of uncertainty in benchmark time since last disturbance, and evaluate metric sensitivity using simulated age‐class distributions representing alternative ecosystems. By accounting for and penalizing too‐frequent and too‐rare disturbances, the summed shortfall metric is more sensitive to change than mean time since last disturbance. We find that mountain ash forest is in much poorer condition (summed shortfall 38.5 out of 100 for a 120‐yr benchmark disturbance interval) than indicated merely by loss of extent (84% of vegetation remaining). Proteaceaous mallee‐heath is in worse condition than indicated by loss of extent for an upper benchmark interval of 80 yr, but condition almost doubles for the minimum tolerable time since last disturbance interval of 20 yr. To fully describe ecosystem degradation, we recommend that our summed shortfall metric, focused on habitat quality and informed by biologically meaningful baselines, be added to existing condition measures focused on vegetation extent. This will improve evaluation of change in ecosystem states and enhance management of ecosystems in poor condition

    Consider species specialism when publishing datasets

    No full text
    corecore