549 research outputs found

    Numerical Evaluation of Subsurface Soil Water Evaporation Derived From Sensible Heat Balance

    Get PDF
    A recently introduced measurement approach allows in situ determination of subsurface soil water evaporation by means of heat-pulse probes (HPP). The latent heat component of subsurface evaporation is estimated from the residual of the sensible heat balance. This heat balance method requires measurement of vertical soil temperature and estimates of thermal properties for soil water evaporation determination. Our objective was to employ numerically simulated thermal and hydraulic processes using constant or diurnally cycled surface boundary conditions to evaluate and understand this technique. Three observation grid spacings, namely, 6 mm (tri-needle HPP), 3 mm (penta-needle HPP) and 1 mm, along with three soil textures (sand, silt, and silty clay) were used to test the heat balance method. The comparison of heat balance–based evaporation rate estimates with an independent soil profile water balance revealed substantial errors when thermal conductivity was averaged spatially across the evaporation front. Since the conduction component of heat flux is the dominant process at the evaporation front, the estimation of evaporation rate was significantly improved using depth-dependent instead of a space-averaged . A near-surface “undetectable zone” exists, where the heat balance calculation is irreconcilable, resulting in underestimation of total subsurface evaporation. The method performs better for medium- and coarse-textured soils than for fine-textured soils, where portions of the drying front may be maintained longer within the undetectable zone. Using smaller temperature sensor spacing near the soil surface minimized underestimation from the undetectable zone and improved accuracy of total subsurface evaporation rate estimates

    Determinants of Protein Abundance and Translation Efficiency in S. cerevisiae

    Get PDF
    The translation efficiency of most Saccharomyces cerevisiae genes remains fairly constant across poor and rich growth media. This observation has led us to revisit the available data and to examine the potential utility of a protein abundance predictor in reinterpreting existing mRNA expression data. Our predictor is based on large-scale data of mRNA levels, the tRNA adaptation index, and the evolutionary rate. It attains a correlation of 0.76 with experimentally determined protein abundance levels on unseen data and successfully cross-predicts protein abundance levels in another yeast species (Schizosaccharomyces pombe). The predicted abundance levels of proteins in known S. cerevisiae complexes, and of interacting proteins, are significantly more coherent than their corresponding mRNA expression levels. Analysis of gene expression measurement experiments using the predicted protein abundance levels yields new insights that are not readily discernable when clustering the corresponding mRNA expression levels. Comparing protein abundance levels across poor and rich media, we find a general trend for homeostatic regulation where transcription and translation change in a reciprocal manner. This phenomenon is more prominent near origins of replications. Our analysis shows that in parallel to the adaptation occurring at the tRNA level via the codon bias, proteins do undergo a complementary adaptation at the amino acid level to further increase their abundance

    A Novel Shortwave Infrared Proximal Sensing Approach to Quantify the Water Stability of Soil Aggregates

    Get PDF
    Soil structure and aggregate stability (AS) are critical soil properties affecting water infiltration, root growth, and resistance to soil and wind erosion. Changes in AS may be early indicators of soil degradation, pointing to low organic matter (OM) content, reduced biological activity, or poor nutrient cycling. Hence, efficient and reliable AS measurement techniques are essential for detection, management, and remediation of degraded soil resources. Here we quantify soil AS by developing a novel proximal sensing technique based on shortwave infrared (SWIR) reflectance measurements. The novel approach is similar to the well-documented high energy moisture characteristic (HEMC) method, which yields a stability ratio (SR) derived from comparison of hydraulic and structural characteristics of slowly- and rapidly-wetted soil samples near-saturation. We rapidly wetted aggregated soil samples (i.e., high energy input) and hypothesized that an AS index can be derived from SWIR surface reflectance spectra due to differences in post-wetting surface roughness that is intimately linked to AS. To test this hypothesis, surface reflectance spectra from a wide range of structured soil textures under both slowly- and rapidly-wetted samples, were measured with a SWIR spectroradiometer (350–2500 nm). The ratio between pre- and post-wetting spectra was determined and compared with the HEMC method’s volume of drainable pore ratio (VDPR). We found a strong correlation (R2 = 0.87) between the VDPR and the SWIR-derived reflectance index (RI) and also between the SR (R2 = 0.90) and the RI for all soils. These results point to the feasibility and appeal of quantifying AS using the newly proposed and more time-efficient proximal sensing method

    Universality of Electron Mobility in LaAlO3_3/SrTiO3_3 and bulk SrTiO3_3

    Get PDF
    Metallic LaAlO3_3/SrTiO3_3 (LAO/STO) interfaces attract enormous attention, but the relationship between the electron mobility and the sheet electron density, nsn_s, is poorly understood. Here we derive a simple expression for the three-dimensional electron density near the interface, n3Dn_{3D}, as a function of nsn_s and find that the mobility for LAO/STO-based interfaces depends on n3Dn_{3D} in the same way as it does for bulk doped STO. It is known that undoped bulk STO is strongly compensated with N≃5×1018 cm−3N \simeq 5 \times 10^{18}~\rm{cm^{-3}} background donors and acceptors. In intentionally doped bulk STO with a concentration of electrons n3D<Nn_{3D} < N background impurities determine the electron scattering. Thus, when n3D<Nn_{3D} < N it is natural to see in LAO/STO the same mobility as in the bulk. On the other hand, in the bulk samples with n3D>Nn_{3D} > N the mobility collapses because scattering happens on n3Dn_{3D} intentionally introduced donors. For LAO/STO the polar catastrophe which provides electrons is not supposed to provide equal number of random donors and thus the mobility should be larger. The fact that the mobility is still the same implies that for the LAO/STO the polar catastrophe model should be revisited.Comment: 4 pages and 1 figur

    Advancing NASA’s AirMOSS P-Band Radar Root Zone Soil Moisture Retrieval Algorithm via Incorporation of Richards’ Equation

    Get PDF
    P-band radar remote sensing applied during the Airborne Microwave Observatory of Subcanopy and Subsurface (AirMOSS) mission has shown great potential for estimation of root zone soil moisture. When retrieving the soil moisture profile (SMP) from P-band radar observations, a mathematical function describing the vertical moisture distribution is required. Because only a limited number of observations are available, the number of free parameters of the mathematical model must not exceed the number of observed data. For this reason, an empirical quadratic function (second order polynomial) is currently applied in the AirMOSS inversion algorithm to retrieve the SMP. The three free parameters of the polynomial are retrieved for each AirMOSS pixel using three backscatter observations (i.e., one frequency at three polarizations of Horizontal-Horizontal, Vertical-Vertical and Horizontal-Vertical). In this paper, a more realistic, physically-based SMP model containing three free parameters is derived, based on a solution to Richards’ equation for unsaturated flow in soils. Evaluation of the new SMP model based on both numerical simulations and measured data revealed that it exhibits greater flexibility for fitting measured and simulated SMPs than the currently applied polynomial. It is also demonstrated that the new SMP model can be reduced to a second order polynomial at the expense of fitting accuracy

    Modeling Temperature and Moisture Dependent Emissions of Carbon Dioxide and Methane From Drying Dairy Cow Manure

    Get PDF
    Greenhouse gas emissions due to biological degradation processes of animal wastes are significant sources of air pollution from agricultural areas. The major environmental controls on these microbe-induced gas fluxes are temperature and moisture content. The objective of this study was to model the effects of temperature and moisture content on emissions of CO2 and CH4 during the ambient drying process of dairy manure under controlled conditions. Gas emissions were continuously recorded over 15 d with paired fully automated closed dynamic chambers coupled with a Fourier Transformed Infrared gas analyzer. Water content and temperature were measured and monitored with capacitance sensors. In addition, on days 0, 3, 6, 9, 12 and 15, pH, moisture content, dissolved organic carbon and total carbon (TC) were determined. An empirical model derived from the Arrhenius equation confirmed high dependency of carbon emissions on temperature and moisture content. Results indicate that for the investigated dairy manure, 6.83% of TC was lost in the form of CO2 and 0.047% of TC was emitted as CH4. Neglecting the effect of temperature, the moisture contents associated with maximum gas emissions were estimated as 0.75 and 0.79 g*g-1 for CO2 and CH4, respectively

    Global environmental changes impact soil hydraulic functions through biophysical feedbacks

    Get PDF
    Although only representing 0.05% of global freshwater, or 0.001% of all global water, soil water supports all terrestrial biological life. Soil moisture behaviour in most models is constrained by hydraulic parameters that do not change. Here we argue that biological feedbacks from plants, macro‐fauna and the microbiome influence soil structure, and thus the soil hydraulic parameters and the soil water content signals we observe. Incorporating biological feedbacks into soil hydrological models is therefore important for understanding environmental change and its impacts on ecosystems. We anticipate that environmental change will accelerate and modify soil hydraulic function. Increasingly we understand the vital role that soil moisture exerts on the carbon cycle and other environmental threats such as heatwaves, droughts and floods, wildfires, regional precipitation patterns, disease regulation and infrastructure stability, in addition to agricultural production. Biological feedbacks may result in changes to soil hydraulic function that could be irreversible, resulting in alternative stable states (ASS) of soil moisture. To explore this, we need models that consider all the major feedbacks between soil properties and soil‐plant‐faunal‐microbial‐atmospheric processes, which is something we currently do not have. Therefore, a new direction is required to incorporate a dynamic description of soil structure and hydraulic property evolution into soil‐plant‐atmosphere, or land surface, models that consider feedbacks from land use and climate drivers of change, so as to better model ecosystem dynamics

    Discovering local patterns of co - evolution: computational aspects and biological examples

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Co-evolution is the process in which two (or more) sets of orthologs exhibit a similar or correlative pattern of evolution. Co-evolution is a powerful way to learn about the functional interdependencies between sets of genes and cellular functions and to predict physical interactions. More generally, it can be used for answering fundamental questions about the evolution of biological systems.</p> <p>Orthologs that exhibit a strong signal of co-evolution in a certain part of the evolutionary tree may show a mild signal of co-evolution in other branches of the tree. The major reasons for this phenomenon are noise in the biological input, genes that gain or lose functions, and the fact that some measures of co-evolution relate to rare events such as positive selection. Previous publications in the field dealt with the problem of finding sets of genes that co-evolved along an entire underlying phylogenetic tree, without considering the fact that often co-evolution is local.</p> <p>Results</p> <p>In this work, we describe a new set of biological problems that are related to finding patterns of <it>local </it>co-evolution. We discuss their computational complexity and design algorithms for solving them. These algorithms outperform other bi-clustering methods as they are designed specifically for solving the set of problems mentioned above.</p> <p>We use our approach to trace the co-evolution of fungal, eukaryotic, and mammalian genes at high resolution across the different parts of the corresponding phylogenetic trees. Specifically, we discover regions in the fungi tree that are enriched with positive evolution. We show that metabolic genes exhibit a remarkable level of co-evolution and different patterns of co-evolution in various biological datasets.</p> <p>In addition, we find that protein complexes that are related to gene expression exhibit non-homogenous levels of co-evolution across different parts of the <it>fungi </it>evolutionary line. In the case of mammalian evolution, signaling pathways that are related to <it>neurotransmission </it>exhibit a relatively higher level of co-evolution along the <it>primate </it>subtree.</p> <p>Conclusions</p> <p>We show that finding local patterns of co-evolution is a computationally challenging task and we offer novel algorithms that allow us to solve this problem, thus opening a new approach for analyzing the evolution of biological systems.</p

    Professionalism, Golf Coaching and a Master of Science Degree: A commentary

    Get PDF
    As a point of reference I congratulate Simon Jenkins on tackling the issue of professionalism in coaching. As he points out coaching is not a profession, but this does not mean that coaching would not benefit from going through a professionalization process. As things stand I find that the stimulus article unpacks some critically important issues of professionalism, broadly within the context of golf coaching. However, I am not sure enough is made of understanding what professional (golf) coaching actually is nor how the development of a professional golf coach can be facilitated by a Master of Science Degree (M.Sc.). I will focus my commentary on these two issues
    • …
    corecore