45 research outputs found

    How motifs condition critical thresholds for tipping cascades in complex networks: Linking Micro- to Macro-scales

    Full text link
    In this study, we investigate how specific micro interaction structures (motifs) affect the occurrence of tipping cascades on networks of stylized tipping elements. We compare the properties of cascades in Erd\"os-R\'enyi networks and an exemplary moisture recycling network of the Amazon rainforest. Within these networks, decisive small-scale motifs are the feed forward loop, the secondary feed forward loop, the zero loop and the neighboring loop. Of all motifs, the feed forward loop motif stands out in tipping cascades since it decreases the critical coupling strength necessary to initiate a cascade more than the other motifs. We find that for this motif, the reduction of critical coupling strength is 11% less than the critical coupling of a pair of tipping elements. For highly connected networks, our analysis reveals that coupled feed forward loops coincide with a strong 90% decrease of the critical coupling strength. For the highly clustered moisture recycling network in the Amazon, we observe regions of very high motif occurrence for each of the four investigated motifs suggesting that these regions are more vulnerable. The occurrence of motifs is found to be one order of magnitude higher than in a random Erd\"os-R\'enyi network. This emphasizes the importance of local interaction structures for the emergence of global cascades and the stability of the network as a whole

    Dynamics of Tipping Cascades on Complex Networks

    Full text link
    Tipping points occur in diverse systems in various disciplines such as ecology, climate science, economy or engineering. Tipping points are critical thresholds in system parameters or state variables at which a tiny perturbation can lead to a qualitative change of the system. Many systems with tipping points can be modeled as networks of coupled multistable subsystems, e.g. coupled patches of vegetation, connected lakes, interacting climate tipping elements or multiscale infrastructure systems. In such networks, tipping events in one subsystem are able to induce tipping cascades via domino effects. Here, we investigate the effects of network topology on the occurrence of such cascades. Numerical cascade simulations with a conceptual dynamical model for tipping points are conducted on Erd\H{o}s-R\'enyi, Watts-Strogatz and Barab\'asi-Albert networks. Additionally, we generate more realistic networks using data from moisture-recycling simulations of the Amazon rainforest and compare the results to those obtained for the model networks. We furthermore use a directed configuration model and a stochastic block model which preserve certain topological properties of the Amazon network to understand which of these properties are responsible for its increased vulnerability. We find that clustering and spatial organization increase the vulnerability of networks and can lead to tipping of the whole network. These results could be useful to evaluate which systems are vulnerable or robust due to their network topology and might help to design or manage systems accordingly.Comment: 22 pages, 12 figure

    Feedback between drought and deforestation in the Amazon

    Get PDF
    Deforestation and drought are among the greatest environmental pressures on the Amazon rainforest, possibly destabilizing the forest-climate system. Deforestation in the Amazon reduces rainfall regionally, while this deforestation itself has been reported to be facilitated by droughts. Here we quantify the interactions between drought and deforestation spatially across the Amazon during the early 21st century. First, we relate observed fluctuations in deforestation rates to dry-season intensity; second, we determine the effect of conversion of forest to cropland on evapotranspiration; and third, we simulate the subsequent downwind reductions in rainfall due to decreased atmospheric water input. We find large variability in the response of deforestation to dry-season intensity, with a significant but small average increase in deforestation rates with a more intense dry season: With every mm of water deficit, deforestation tends to increase by 0.13% per year. Deforestation, in turn, has caused an estimated 4% of the recent observed drying, with the south-western part of the Amazon being most strongly affected. Combining both effects, we quantify a reinforcing drought-deforestation feedback that is currently small, but becomes gradually stronger with cumulative deforestation. Our results suggest that global climate change, not deforestation, is the main driver of recent drying in the Amazon. However, a feedback between drought and deforestation implies that increases in either of them will impede efforts to curb both.</p

    Recurrent droughts increase risk of cascading tipping events by outpacing adaptive capacities in the Amazon rainforest

    Get PDF
    Tipping elements are nonlinear subsystems of the Earth system that have the potential to abruptly shift to another state if environmental change occurs close to a critical threshold with large consequences for human societies and ecosystems. Among these tipping elements may be the Amazon rainforest, which has been undergoing intensive anthropogenic activities and increasingly frequent droughts. Here, we assess how extreme deviations fromclimatological rainfall regimes may cause local forest collapse that cascades through the coupled forest-climate system. We develop a conceptual dynamic network model to isolate and uncover the role of atmospheric moisture recycling in such tipping cascades. We account for heterogeneity in critical thresholds of the forest caused by adaptation to local climatic conditions. Our results reveal that, despite this adaptation, a future climate characterized by permanent drought conditions could trigger a transition to an open canopy state particularly in the southern Amazon.Theloss of atmospheric moisture recycling contributes to one-third of the tipping events.Thus, by exceeding local thresholds in forest adaptive capacity, local climate change impacts may propagate to other regions of the Amazon basin, causing a risk of forest shifts even in regions where critical thresholds have not been crossed locally

    The global potential of forest restoration for drought mitigation

    Get PDF
    Forest restoration is increasingly applied as a climate change mitigation measure. Apart from sequestering carbon, the large-scale addition of trees on Earth may enhance global precipitation levels. Here we estimate the global precipitation effects of the global forest potential by estimating its effects on evaporation and simulating the downwind precipitation effect of the moisture added to the atmosphere. We find that maximum forestation would on average increase evaporation by 0.6 mm d-1 and that two-thirds of that additional evaporation would rain out over land, especially during the growing season. Next, by excluding natural grasslands and prioritizing precipitation enhancement above areas that are projected to become drier due to global climate change, we establish where on Earth forest restoration would have the greatest precipitation benefits. Our results thus provide a first step towards forest restoration programs as double climate-change mitigation efforts

    The residence time of water in the atmosphere revisited

    No full text
    This paper revisits the knowledge on the residence time of water in the atmosphere. Based on state-of-the-art data of the hydrological cycle we derive a global average residence time of 8.9 ± 0.4 days (uncertainty given as 1 standard deviation). We use two different atmospheric moisture tracking models (WAM-2layers and 3D-T) to obtain atmospheric residence time characteristics in time and space. The tracking models estimate the global average residence time to be around 8.5 days based on ERA-Interim data. We conclude that the statement of a recent study that the global average residence time of water in the atmosphere is 4-5 days, is not correct. We derive spatial maps of residence time, attributed to evaporation and precipitation, and age of atmospheric water, showing that there are different ways of looking at temporal characteristics of atmospheric water. Longer evaporation residence times often indicate larger distances towards areas of high precipitation. From our analysis we find that the residence time over the ocean is about 2 days less than over land. It can be seen that in winter, the age of atmospheric moisture tends to be much lower than in summer. In the Northern Hemisphere, due to the contrast in ocean-to-land temperature and associated evaporation rates, the age of atmospheric moisture increases following atmospheric moisture flow inland in winter, and decreases in summer. Looking at the probability density functions of atmospheric residence time for precipitation and evaporation, we find long-tailed distributions with the median around 5 days. Overall, our research confirms the 8&ndash;10-day traditional estimate for the global mean residence time of atmospheric water, and our research contributes to a more complete view of the characteristics of the turnover of water in the atmosphere in time and space

    The global potential of forest restoration for drought mitigation

    Get PDF
    Forest restoration is increasingly applied as a climate change mitigation measure. Apart from sequestering carbon, the large-scale addition of trees on Earth may enhance global precipitation levels. Here we estimate the global precipitation effects of the global forest potential by estimating its effects on evaporation and simulating the downwind precipitation effect of the moisture added to the atmosphere. We find that maximum forestation would on average increase evaporation by 0.6 mm d-1 and that two-thirds of that additional evaporation would rain out over land, especially during the growing season. Next, by excluding natural grasslands and prioritizing precipitation enhancement above areas that are projected to become drier due to global climate change, we establish where on Earth forest restoration would have the greatest precipitation benefits. Our results thus provide a first step towards forest restoration programs as double climate-change mitigation efforts

    Global evaporation to precipitation flows obtained with Lagrangian atmospheric moisture tracking

    No full text
    We present a global dataset of atmospheric moisture flows from evaporation to precipitation on 0.5° spatial resolution. We simulated the moisture flows between each pair of cells across the land and oceans between 2008 and 2016 and publish their monthly climatological means. We used a Langrangian moisture tracking scheme forced with ERA5 reanalysis data of 25 atmospheric layers and hourly wind speeds and directions. The resulting dataset is a network that allows users to identify and quantify the sources of rainfall and sinks of evaporation for any area on Earth, from regional to global scales
    corecore