10 research outputs found

    Identification of the BRD1 interaction network and its impact on mental disorder risk

    Get PDF
    BACKGROUND: The bromodomain containing 1 (BRD1) gene has been implicated with transcriptional regulation, brain development, and susceptibility to schizophrenia and bipolar disorder. To advance the understanding of BRD1 and its role in mental disorders, we characterized the protein and chromatin interactions of the BRD1 isoforms, BRD1-S and BRD1-L. METHODS: Stable human cell lines expressing epitope tagged BRD1-S and BRD1-L were generated and used as discovery systems for identifying protein and chromatin interactions. Protein-protein interactions were identified using co-immunoprecipitation followed by mass spectrometry and chromatin interactions were identified using chromatin immunoprecipitation followed by next generation sequencing. Gene expression profiles and differentially expressed genes were identified after upregulating and downregulating BRD1 expression using microarrays. The presented functional molecular data were integrated with human genomic and transcriptomic data using available GWAS, exome-sequencing datasets as well as spatiotemporal transcriptomic datasets from the human brain. RESULTS: We present several novel protein interactions of BRD1, including isoform-specific interactions as well as proteins previously implicated with mental disorders. By BRD1-S and BRD1-L chromatin immunoprecipitation followed by next generation sequencing we identified binding to promoter regions of 1540 and 823 genes, respectively, and showed correlation between BRD1-S and BRD1-L binding and regulation of gene expression. The identified BRD1 interaction network was found to be predominantly co-expressed with BRD1 mRNA in the human brain and enriched for pathways involved in gene expression and brain function. By interrogation of large datasets from genome-wide association studies, we further demonstrate that the BRD1 interaction network is enriched for schizophrenia risk. CONCLUSION: Our results show that BRD1 interacts with chromatin remodeling proteins, e.g. PBRM1, as well as histone modifiers, e.g. MYST2 and SUV420H1. We find that BRD1 primarily binds in close proximity to transcription start sites and regulates expression of numerous genes, many of which are involved with brain development and susceptibility to mental disorders. Our findings indicate that BRD1 acts as a regulatory hub in a comprehensive schizophrenia risk network which plays a role in many brain regions throughout life, implicating e.g. striatum, hippocampus, and amygdala at mid-fetal stages. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13073-016-0308-x) contains supplementary material, which is available to authorized users

    The schizophrenia associated BRD1 gene regulates behavior, neurotransmission, and expression of schizophrenia risk enriched gene sets in mice

    Get PDF
    BackgroundThe schizophrenia-associated BRD1 gene encodes a transcriptional regulator whose comprehensive chromatin interactome is enriched with schizophrenia risk genes. However, the biology underlying the disease association of BRD1 remains speculative.MethodsThis study assessed the transcriptional drive of a schizophrenia-associated BRD1 risk variant in vitro. Accordingly, to examine the effects of reduced Brd1 expression, we generated a genetically modified Brd1+/- mouse and subjected it to behavioral, electrophysiological, molecular, and integrative genomic analyses with focus on schizophrenia-relevant parameters.ResultsBrd1+/- mice displayed cerebral histone H3K14 hypo-acetylation and a broad range of behavioral changes with translational relevance to schizophrenia. These behaviors were accompanied by striatal dopamine/serotonin abnormalities and cortical excitation-inhibition imbalances involving loss of parvalbumin immunoreactive interneurons. RNAseq analyses of cortical and striatal micropunches from Brd1+/- and wild-type mice revealed differential expression of genes enriched for schizophrenia risk including several schizophrenia GWAS risk genes (e.g. calcium channel subunits (Cacna1c and Cacnb2), cholinergic muscarinic receptor 4 (Chrm4), dopamine receptor D2 (Drd2), and transcription factor 4 (Tcf4)). Integrative analyses further found differentially expressed genes to cluster in functional networks and canonical pathways associated with mental illness and molecular signaling processes (e.g. glutamatergic, monaminergic, calcium, cAMP, DARPP-32, and CREB signaling).ConclusionsOur study bridges the gap between genetic association and pathogenic effects and yields novel insights into the unfolding molecular changes in the brain of a new schizophrenia model that incorporates genetic risk at three levels: allelic, chromatin interactomic, and brain transcriptomic

    On some aspects of the relationship between the landlord and the tenant in a residental lease

    No full text
    Metadata and statistics of integrative ChIP-seq and expression analysis. This file contains three Excel spreadsheets. Spreadsheet 1 contains information on the number of genes common to both the exon expression array and ChIPseq analyses. Spreadsheets 2 and 3 include statistical and permutation tests concerning enrichment of DEGs among BRD1 PTGs. (XLSX 12 kb
    corecore