72 research outputs found

    Neurogenic lower urinary tract dysfunction: evaluation and management

    Get PDF
    The lower urinary tract (LUT) in health is regulated by coordinated multi-level neurological inputs which require an intact central and peripheral nervous system. Lower urinary tract dysfunction is, therefore, a common sequelae of neurological disease and the patterns of bladder storage and voiding dysfunction depend upon the level of neurological lesion. Evaluation includes history taking, bladder diary, urological examination when relevant, ultrasonography and urodynamic testing when indicated. Antimuscarinic agents are the first line treatment for patients with storage dysfunction. Alternative treatments include intradetrusor injection of onabotulinumtoxinA, which has been shown to be of benefit in patients with neurogenic detrusor overactivity (NDO), and neuromodulation. Intermittent catheterization remains the option of choice in patients with significant voiding dysfunction resulting in high post-void residual volumes

    Does Prehabilitation modify muscle mass in patients with rectal cancer undergoing neoadjuvant therapy?:A subanalysis from the REx Randomised Controlled Trial

    Get PDF
    Background: Patients with rectal cancer who present with sarcopenia (low muscle mass) are at significantly greater risk of postoperative complications and reduction in disease-free survival. We performed a subanalysis of a randomised controlled study [the REx trial; www.isrctn.com; 62859294] to assess the potential of prehabilitation to modify muscle mass in patients having neoadjuvant chemoradiotherapy (NACRT). Methods: Patients scheduled for NACRT, then potentially curative surgery (August 2014–March 2016) had baseline physical assessment and psoas muscle mass measurement (total psoas index using computed tomography-based measurements). Participants were randomised to either the intervention (13–17-week telephone-guided graduated walking programme) or control group (standard care). Follow-up testing was performed 1–2 weeks before surgery. Results: The 44 patients had a mean age of 66.8 years (SD 9.6) and were male (64%); white (98%); American Society of Anesthesiologists class 2 (66%); co-morbid (58%); overweight (72%) (body mass index ≥ 25 kg/m2). At baseline, 14% were sarcopenic. At follow-up, 13 (65%) of patients in the prehabilitation group had increased muscle mass versus 7 (35%) that experienced a decrease. Conversely, 16 (67%) controls experienced a decrease in muscle mass and 8 (33%) showed an increase. An adjusted linear regression model estimated a mean treatment difference in Total Psoas Index of 40.2mm2/m2 (95% CI − 3.4 to 83.7) between groups in change from baseline (p = 0.07). Conclusions: Prehabilitation improved muscle mass in patients with rectal cancer who had NACRT. These results need to be explored in a larger trial to determine if the poorer short- and long-term patient outcomes associated with low muscle mass can be minimised by prehabilitation

    Longitudinal changes in sedentary time and physical activity during adolescence

    Get PDF
    BACKGROUND: Low levels of physical activity and high time spent in sedentary activities have been associated with unfavourable health outcomes in adolescents. During adolescence, physical activity declines and sedentary time increases, however little is known about whether the magnitude of these changes differs within or between school-time, after-school time, or at weekends. METHODS: Adolescents (n = 363) participating in the PEACH (Personal and Environmental Associations with Children’s Health) project provided accelerometer data at 12 and 15 years of age. Data were collected in 2008/2009 and 2012/2013. Time spent sedentary (<100 cpm), in light physical activity (LPA (100-2295 cpm) and in moderate to vigorous physical activity (MVPA: ≥ 2296 cpm) were generated for school-time, after-school time and for weekends using school-specific start and finish times. All data were analysed in 2014. RESULTS: The proportion of time spent sedentary significantly increased during school (+8.23%, 95% CI = 7.35 to 9.13), after-school (+6.99%, 95% CI = 5.91 to 8.07) and at weekends (+6.86%, 95% CI = 5.10 to 8.62). A parallel decrease was found in the proportion of time spent in LPA during school (-7.62%, 95% CI = -8.26 to -6.98), after-school (-7.01%, 95% CI = -7.74 to -6.28) and at weekends (-6.72%, 95% CI = -7.80 to -5.65). The proportion of time spent in MVPA remained relatively stable during school (-0.64, 95% CI = -1.11 to -0.18), after-school (0.04%, 95% CI = -0.58 to 0.67) and at weekends (-0.14%, 95% CI = -1.18 to 0.90). CONCLUSIONS: Objectively measured sedentary time increased between 12 and 15 years of age during-school, after-school, and at weekends, suggesting that interventions aiming to reduce the age-associated changes in sedentary time are needed in all three time contexts. Future work should identify which sedentary activities change more than others to inform interventions which aim to minimise the increase in time spent sedentary during adolescence

    Co-Localization of the Oncogenic Transcription Factor MYCN and the DNA Methyl Binding Protein MeCP2 at Genomic Sites in Neuroblastoma

    Get PDF
    MYCN is a transcription factor that is expressed during the development of the neural crest and its dysregulation plays a major role in the pathogenesis of pediatric cancers such as neuroblastoma, medulloblastoma and rhabdomyosarcoma. MeCP2 is a CpG methyl binding protein which has been associated with a number of cancers and developmental disorders, particularly Rett syndrome.Using an integrative global genomics approach involving chromatin immunoprecipitation applied to microarrays, we have determined that MYCN and MeCP2 co-localize to gene promoter regions, as well as inter/intragenic sites, within the neuroblastoma genome (MYCN amplified Kelly cells) at high frequency (70.2% of MYCN sites were also positive for MeCP2). Intriguingly, the frequency of co-localization was significantly less at promoter regions exhibiting substantial hypermethylation (8.7%), as determined by methylated DNA immunoprecipitation (MeDIP) applied to the same microarrays. Co-immunoprecipitation of MYCN using an anti-MeCP2 antibody indicated that a MYCN/MeCP2 interaction occurs at protein level. mRNA expression profiling revealed that the median expression of genes with promoters bound by MYCN was significantly higher than for genes bound by MeCP2, and that genes bound by both proteins had intermediate expression. Pathway analysis was carried out for genes bound by MYCN, MeCP2 or MYCN/MeCP2, revealing higher order functions.Our results indicate that MYCN and MeCP2 protein interact and co-localize to similar genomic sites at very high frequency, and that the patterns of binding of these proteins can be associated with significant differences in transcriptional activity. Although it is not yet known if this interaction contributes to neuroblastoma disease pathogenesis, it is intriguing that the interaction occurs at the promoter regions of several genes important for the development of neuroblastoma, including ALK, AURKA and BDNF

    Brisk walking compared with an individualised medical fitness programme for patients with type 2 diabetes: a randomised controlled trial

    Get PDF
    AIMS/HYPOTHESIS: Structured exercise is considered a cornerstone in type 2 diabetes treatment. However, adherence to combined resistance and endurance type exercise or medical fitness intervention programmes is generally poor. Group-based brisk walking may represent an attractive alternative, but its long-term efficacy as compared with an individualised approach such as medical fitness intervention programmes is unknown. We compared the clinical benefits of a 12-month exercise intervention programme consisting of either brisk walking or a medical fitness programme in type 2 diabetes patients. METHODS: We randomised 92 type 2 diabetes patients (60 +/- 9 years old) to either three times a week of 60 min brisk walking (n = 49) or medical fitness programme (n = 43). Primary outcome was the difference in changes in HbA1c values at 12 months. Secondary outcomes were differences in changes in blood pressure, plasma lipid concentrations, insulin sensitivity, body composition, physical fitness, programme adherence rate and health-related quality of life. RESULTS: After 12 months, 18 brisk walking and 19 medical fitness participants were still actively participating. In both programmes, 50 and 25% of the dropout was attributed to overuse injuries and lack of motivation, respectively. Intention-to-treat analyses showed no important differences between brisk walking and medical fitness programme in primary or secondary outcome variables. CONCLUSIONS/INTERPRETATION: The prescription of group-based brisk walking represents an equally effective intervention to modulate glycaemic control and cardiovascular risk profile in type 2 diabetes patients when compared with more individualised medical fitness programmes. Future exercise intervention programmes should anticipate the high attrition rate due to overuse injuries and motivation problems

    DNA methylation and methyl-CpG binding proteins: developmental requirements and function

    Get PDF
    DNA methylation is a major epigenetic modification in the genomes of higher eukaryotes. In vertebrates, DNA methylation occurs predominantly on the CpG dinucleotide, and approximately 60% to 90% of these dinucleotides are modified. Distinct DNA methylation patterns, which can vary between different tissues and developmental stages, exist on specific loci. Sites of DNA methylation are occupied by various proteins, including methyl-CpG binding domain (MBD) proteins which recruit the enzymatic machinery to establish silent chromatin. Mutations in the MBD family member MeCP2 are the cause of Rett syndrome, a severe neurodevelopmental disorder, whereas other MBDs are known to bind sites of hypermethylation in human cancer cell lines. Here, we review the advances in our understanding of the function of DNA methylation, DNA methyltransferases, and methyl-CpG binding proteins in vertebrate embryonic development. MBDs function in transcriptional repression and long-range interactions in chromatin and also appear to play a role in genomic stability, neural signaling, and transcriptional activation. DNA methylation makes an essential and versatile epigenetic contribution to genome integrity and function

    Prevalence and attributable health burden of chronic respiratory diseases, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017

    Get PDF
    Background Previous attempts to characterise the burden of chronic respiratory diseases have focused only on specific disease conditions, such as chronic obstructive pulmonary disease (COPD) or asthma. In this study, we aimed to characterise the burden of chronic respiratory diseases globally, providing a comprehensive and up-to-date analysis on geographical and time trends from 1990 to 2017. Methods Using data from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2017, we estimated the prevalence, morbidity, and mortality attributable to chronic respiratory diseases through an analysis of deaths, disability-adjusted life-years (DALYs), and years of life lost (YLL) by GBD super-region, from 1990 to 2017, stratified by age and sex. Specific diseases analysed included asthma, COPD, interstitial lung disease and pulmonary sarcoidosis, pneumoconiosis, and other chronic respiratory diseases. We also assessed the contribution of risk factors (smoking, second-hand smoke, ambient particulate matter and ozone pollution, household air pollution from solid fuels, and occupational risks) to chronic respiratory disease-attributable DALYs. Findings In 2017, 544·9 million people (95% uncertainty interval [UI] 506·9–584·8) worldwide had a chronic respiratory disease, representing an increase of 39·8% compared with 1990. Chronic respiratory disease prevalence showed wide variability across GBD super-regions, with the highest prevalence among both males and females in high-income regions, and the lowest prevalence in sub-Saharan Africa and south Asia. The age-sex-specific prevalence of each chronic respiratory disease in 2017 was also highly variable geographically. Chronic respiratory diseases were the third leading cause of death in 2017 (7·0% [95% UI 6·8–7·2] of all deaths), behind cardiovascular diseases and neoplasms. Deaths due to chronic respiratory diseases numbered 3 914 196 (95% UI 3 790 578–4 044 819) in 2017, an increase of 18·0% since 1990, while total DALYs increased by 13·3%. However, when accounting for ageing and population growth, declines were observed in age-standardised prevalence (14·3% decrease), age-standardised death rates (42·6%), and age-standardised DALY rates (38·2%). In males and females, most chronic respiratory disease-attributable deaths and DALYs were due to COPD. In regional analyses, mortality rates from chronic respiratory diseases were greatest in south Asia and lowest in sub-Saharan Africa, also across both sexes. Notably, although absolute prevalence was lower in south Asia than in most other super-regions, YLLs due to chronic respiratory diseases across the subcontinent were the highest in the world. Death rates due to interstitial lung disease and pulmonary sarcoidosis were greater than those due to pneumoconiosis in all super-regions. Smoking was the leading risk factor for chronic respiratory disease-related disability across all regions for men. Among women, household air pollution from solid fuels was the predominant risk factor for chronic respiratory diseases in south Asia and sub-Saharan Africa, while ambient particulate matter represented the leading risk factor in southeast Asia, east Asia, and Oceania, and in the Middle East and north Africa super-region. Interpretation Our study shows that chronic respiratory diseases remain a leading cause of death and disability worldwide, with growth in absolute numbers but sharp declines in several age-standardised estimators since 1990. Premature mortality from chronic respiratory diseases seems to be highest in regions with less-resourced health systems on a per-capita basis. Funding Bill & Melinda Gates Foundation

    Global burden of 87 risk factors in 204 countries and territories, 1990�2019: a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF
    Background: Rigorous analysis of levels and trends in exposure to leading risk factors and quantification of their effect on human health are important to identify where public health is making progress and in which cases current efforts are inadequate. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019 provides a standardised and comprehensive assessment of the magnitude of risk factor exposure, relative risk, and attributable burden of disease. Methods: GBD 2019 estimated attributable mortality, years of life lost (YLLs), years of life lived with disability (YLDs), and disability-adjusted life-years (DALYs) for 87 risk factors and combinations of risk factors, at the global level, regionally, and for 204 countries and territories. GBD uses a hierarchical list of risk factors so that specific risk factors (eg, sodium intake), and related aggregates (eg, diet quality), are both evaluated. This method has six analytical steps. (1) We included 560 risk�outcome pairs that met criteria for convincing or probable evidence on the basis of research studies. 12 risk�outcome pairs included in GBD 2017 no longer met inclusion criteria and 47 risk�outcome pairs for risks already included in GBD 2017 were added based on new evidence. (2) Relative risks were estimated as a function of exposure based on published systematic reviews, 81 systematic reviews done for GBD 2019, and meta-regression. (3) Levels of exposure in each age-sex-location-year included in the study were estimated based on all available data sources using spatiotemporal Gaussian process regression, DisMod-MR 2.1, a Bayesian meta-regression method, or alternative methods. (4) We determined, from published trials or cohort studies, the level of exposure associated with minimum risk, called the theoretical minimum risk exposure level. (5) Attributable deaths, YLLs, YLDs, and DALYs were computed by multiplying population attributable fractions (PAFs) by the relevant outcome quantity for each age-sex-location-year. (6) PAFs and attributable burden for combinations of risk factors were estimated taking into account mediation of different risk factors through other risk factors. Across all six analytical steps, 30 652 distinct data sources were used in the analysis. Uncertainty in each step of the analysis was propagated into the final estimates of attributable burden. Exposure levels for dichotomous, polytomous, and continuous risk factors were summarised with use of the summary exposure value to facilitate comparisons over time, across location, and across risks. Because the entire time series from 1990 to 2019 has been re-estimated with use of consistent data and methods, these results supersede previously published GBD estimates of attributable burden. Findings: The largest declines in risk exposure from 2010 to 2019 were among a set of risks that are strongly linked to social and economic development, including household air pollution; unsafe water, sanitation, and handwashing; and child growth failure. Global declines also occurred for tobacco smoking and lead exposure. The largest increases in risk exposure were for ambient particulate matter pollution, drug use, high fasting plasma glucose, and high body-mass index. In 2019, the leading Level 2 risk factor globally for attributable deaths was high systolic blood pressure, which accounted for 10·8 million (95 uncertainty interval UI 9·51�12·1) deaths (19·2% 16·9�21·3 of all deaths in 2019), followed by tobacco (smoked, second-hand, and chewing), which accounted for 8·71 million (8·12�9·31) deaths (15·4% 14·6�16·2 of all deaths in 2019). The leading Level 2 risk factor for attributable DALYs globally in 2019 was child and maternal malnutrition, which largely affects health in the youngest age groups and accounted for 295 million (253�350) DALYs (11·6% 10·3�13·1 of all global DALYs that year). The risk factor burden varied considerably in 2019 between age groups and locations. Among children aged 0�9 years, the three leading detailed risk factors for attributable DALYs were all related to malnutrition. Iron deficiency was the leading risk factor for those aged 10�24 years, alcohol use for those aged 25�49 years, and high systolic blood pressure for those aged 50�74 years and 75 years and older. Interpretation: Overall, the record for reducing exposure to harmful risks over the past three decades is poor. Success with reducing smoking and lead exposure through regulatory policy might point the way for a stronger role for public policy on other risks in addition to continued efforts to provide information on risk factor harm to the general public. Funding: Bill & Melinda Gates Foundation. © 2020 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 licens
    corecore