3,820 research outputs found
The effect of a cardiovascular risk factor education program on health behaviors of selected school age children
This study, using a quasi-experimental design, was conducted to explore the effect of a cardiovascular risk factor education program on the health behaviors of a group of fifth grade children. The following hypothesis was tested:
There will be a statistically significant improvement in self-reported health behaviors of school age children who receive a cardiovascular risk factor education program as compared to the self-reported health behaviors of those school age children who do not receive a cardiovascular risk factor education program.
One hundred and nineteen subjects, 63 in the experimental group and 56 in the control group, were tested using the researcher\u27s designed health behavior questionnaire, My Health Behaviors , before and after participation in the health education program. The program provided for the experimental group consisted of eight 45 minute sessions. The introductory and summary sessions were primarily concerned with administration of the pretest and post-test and sessions two through seven were informative sessions about high fat, high cholesterol diet, smoking and sedentary lifestyle. The program provided for the control group consisted of four 45 minute sessions; session one was concerned with introductory material and administration of the pre-test, sessions two and three were informative sessions related to general nutrition and foods high in salt and sugar, and session four was devoted to review of content as well as administration of the post—test.
Data were statistically analyzed using the paired-sample student\u27s t-test. Results of the analysis revealed a significant difference between the two sample groups at p\u3c0.01 level. The hypothesis was accepted
Recommended from our members
A survey of current and anticipated use of standard and specialist equipment by UK optometrists
Purpose: To investigate current and anticipated use of equipment and information technology (IT) in community optometric practice in the UK, and to elicit optometrists' views on adoption of specialist equipment and IT.
Methods: An anonymous online questionnaire was developed, covering use of standard and specialist diagnostic equipment, and IT. The survey was distributed to a random sample of 1300 UK College of Optometrists members.
Results: Four hundred and thirty-two responses were received (response rate = 35%). Enhanced (locally commissioned) or additional/separately contracted services were provided by 73% of respondents. Services included glaucoma repeat measures (30% of respondents), glaucoma referral refinement (22%), fast-track referral for wet age-related macular degeneration (48%), and direct cataract referral (40%). Most respondents (88%) reported using non-contact/pneumo tonometry for intra-ocular pressure measurement, with 81% using Goldmann or Perkins tonometry. The most widely used item of specialist equipment was the fundus camera (74% of respondents). Optical Coherence Tomography (OCT) was used by 15% of respondents, up from 2% in 2007. Notably, 43% of those anticipating purchasing specialist equipment in the next 12 months planned to buy an OCT. ‘Paperless’ records were used by 39% of respondents, and almost 80% of practices used an electronic patient record/practice management system. Variations in responses between parts of the UK reflect differences in the provision of the General Ophthalmic Services contract or community enhanced services. There was general agreement that specialised equipment enhances clinical care, permits increased involvement in enhanced services, promotes the practice and can be used as a defence in clinico-legal cases, but initial costs and ongoing maintenance can be a financial burden. Respondents generally agreed that IT facilitates administrative flow and secure exchange of health information, and promotes a state-of-the-art practice image. However, use of IT may not save examination time; its dynamic nature necessitates frequent updates and technical support; the need for adequate training is an issue; and security of data is also a concern.
Conclusion: UK optometrists increasingly employ modern equipment and IT services to enhance patient care and for practice management. While the clinical benefits of specialist equipment and IT are appreciated, questions remain as to whether the investment is cost-effective, and how specialist equipment and IT may be used to best advantage in community optometric practice
Small scale structure and mixing at the edge of the Antarctic vortex
Small scale correlations and patterns in the chemical tracers measured from the NASA ER-2 aircraft in the 1987 AAOE campaign can be used to investigate the structure of the edge of the polar vortex and the chemically perturbed region within it. Examples of several types of transport processes can be found in the data. Since ClO and O3 have similar vertical gradients and opposite horizontal gradients near the chemically perturbed region, the correlation between ClO and O3 can be used to study the extent of horizontal transport at the edge of the chemically perturbed region. Horizontal transport dominates the correlation for a latitude band up to 4 degrees on each side of the boundary. This implies a transition zone containing a substantial fraction of the mass of the total polar vortex. Similar horizontal transport can be seen in other tracers as well. It has not been possible to distinguish reversible transport from irreversible mixing. One manifestation of the horizontal transport is that the edge of the chemically perturbed region is often layered rather than a vertical curtain. This can be seen from the frequent reversed vertical gradients of NO2, caused by air with high NO2 overlapping layers with lower mixing ratios. Water and NO2 are positively correlated within the chemically perturbed region. This is the opposite sign to the correlation in the unperturbed stratosphere. The extent of the positive correlation is too great to be attributed solely to horizontal mixing. Instead, it is hypothesized that dehydration and descent are closely connected on a small scale, possibly due to radiative cooling of the clouds that also cause ice to fall to lower altitudes
Visualization of defect-induced excitonic properties of the edges and grain boundaries in synthesized monolayer molybdenum disulfide
Atomically thin two-dimensional (2D) transition metal dichalcogenides (TMDCs)
are attractive materials for next generation nanoscale optoelectronic
applications. Understanding nanoscale optical behavior of the edges and grain
boundaries of synthetically grown TMDCs is vital for optimizing their
optoelectronic properties. Elucidating the nanoscale optical properties of 2D
materials through far-field optical microscopy requires a diffraction-limited
optical beam diameter sub-micron in size. Here we present our experimental work
on spatial photoluminescence (PL) scanning of large size ( microns)
monolayer MoS grown by chemical vapor deposition (CVD) using a diffraction
limited blue laser beam spot (wavelength 405 nm) with a beam diameter as small
as 200 nm allowing us to probe nanoscale excitonic phenomena which was not
observed before. We have found several important features: (i) there exists a
sub-micron width strip ( nm) along the edges that fluoresces brighter than the region far inside; (ii) there is another brighter
wide region consisting of parallel fluorescing lines ending at the corners of
the zig-zag peripheral edges; (iii) there is a giant blue shifted A-excitonic
peak, as large as meV, in the PL spectra from the edges. Using
density functional theory calculations, we attribute this giant blue shift to
the adsorption of oxygen dimers at the edges, which reduces the excitonic
binding energy. Our results not only shed light on defect-induced excitonic
properties, but also offer an attractive route to tailor optical properties at
the TMDC edges through defect engineering.Comment: 10 pages, 4 figures in Journal of Physical Chemistry C, 201
In the Grip of Grief:Epistemic Impotence and the Materiality of Mourning in Shinya Tsukamoto’s <i>Vital</i>
Learning in Tele-autonomous Systems using Soar
Robo-Soar is a high-level robot arm control system implemented in Soar. Robo-Soar learns to perform simple block manipulation tasks using advice from a human. Following learning, the system is able to perform similar tasks without external guidance. Robo-Soar corrects its knowledge by accepting advice about relevance of features in its domain, using a unique integration of analytic and empirical learning techniques
Large-scale variations in ozone and polar stratospheric clouds measured with airborne lidar during formation of the 1987 ozone hole over Antarctica
A joint field experiment between NASA and NOAA was conducted during August to September 1987 to obtain in situ and remote measurements of key gases and aerosols from aircraft platforms during the formation of the ozone (O3) hole over Antarctica. The ER-2 (advanced U-2) and DC-8 aircraft from the NASA Ames Research Center were used in this field experiment. The NASA Langley Research Center's airborne differential absorption lidar (DIAL) system was operated from the DC-8 to obtain profiles of O3 and polar stratospheric clouds in the lower stratosphere during long-range flights over Antarctica from August 28 to September 29, 1987. The airborne DIAL system was configured to transmit simultaneously four laser wavelengths (301, 311, 622, and 1064 nm) above the DC-8 for DIAL measurements of O3 profiles between 11 to 20 km ASL (geometric altitude above sea level) and multiple wavelength aerosol backscatter measurements between 11 to 24 km ASL. A total of 13 DC-8 flights were made over Antarctica with 2 flights reaching the South Pole. Polar stratospheric clouds (PSC's) were detected in multiple thin layers in the 11 to 21 km ASL altitude range with each layer having a typical thickness of less than 1 km. Two types of PSC's were found based on aerosol backscattering ratios: predominantly water ice clouds (type 2) and clouds with scattering characteristics consistent with binary solid nitric acid/water clouds (type 1). Large-scale cross sections of O3 distributions were obtained. The data provides additional information about a potentially important transport mechanism that may influence the O3 budget inside the vortex. There is also some evidence that strong low pressure systems in the troposphere are associated with regions of lower stratospheric O3. This paper discusses the spatial and temporal variations of O3 inside and outside the polar vortex region during the development of the O3 hole and relates these data to other measurements obtained during this field experiment
Selective laser melting of aluminium alloys
Metal additive manufacturing (AM) processes, such as selective laser melting, enable powdered metals to be formed into arbitrary 3D shapes. For aluminium alloys, which are desirable in many high-value applications for their low density and good mechanical performance, selective laser melting is regarded as challenging due to the difficulties in laser melting aluminium powders. However, a number of studies in recent years have demonstrated successful aluminium processing, and have gone on to explore its potential for use in advanced, AM componentry. In addition to enabling the fabrication of highly complex structures, selective laser melting produces parts with characteristically fine microstructures that yield distinct mechanical properties. Research is rapidly progressing in this field, with promising results opening up a range of possible applications across scientific and industrial sectors. This paper reports on recent developments in this area of research as well as highlighting some key topics that require further attention
Temporal trends and transport within and around the Antarctic polar vortex during the formation of the 1987 Antarctic ozone hole
During AAOE in 1987 an ER-2 high altitude aircraft made twelve flights out of Punta Arenas, Chile (53 S, 71 W) into the Antarctic polar vortex. The aircraft was fitted with fast response instruments for in situ measurements of many trace species including O3, ClO, BrO, NO sub y, NO, H2O, and N2O. Grab samples of long-lived tracers were also taken and a scanning microwave radiometer measured temperatures above and below the aircraft. Temperature, pressure, and wind measurements were also made on the flight tracks. Most of these flights were flown to 72 S, at a constant potential temperature, followed by a dip to a lower altitude and again assuming a sometimes different potential temperature for the return leg. The potential temperature chosen was 425 K (17 to 18 km) on 12 of the flight legs, and 5 of the flight legs were flown at 450 K (18 to 19 km). The remaining 7 legs of the 12 flights were not flown on constant potential temperature surfaces. Tracer data have been analyzed for temporal trends. Data from the ascents out of Punta Arenas, the constant potential temperature flight legs, and the dips within the vortex are used to compare tracer values inside and outside the vortex, both with respect to constant potential temperature and constant N2O. The time trend during the one-month period of August 23 through September 22, 1987, shows that ozone decreased by 50 percent or more at altitudes form 15 to 19 km. This trend is evident whether analyzed with respect to constant potential temperature or constant N2O. The trend analysis for ozone outside the vortex shows no downward trend during this period. The analysis for N2O at a constant potential temperature indicates no significant trend either inside or outside the vortex; however, a decrease in N2O with an increase in latitude is evident
Robo-Soar: An Integration of External Interaction, Planning, and Learning using Soar
This chapter reports progress in extending the Soar architecture to tasks that involve interaction with external environments. The tasks are performed using a Puma arm and a camera in a system called Robo-Soar. The tasks require the integration of a variety of capabilities
including problem solving with incomplete knowledge, reactivity, planning, guidance from external advice, and learning to improve the efficiency and correctness of problem solving. All of these capabilities are achieved without the addition of special purpose modules or subsystems to Soar
- …
