539 research outputs found

    Correlation between traffic density and particle size distribution in a street canyon and the dependence on wind direction

    Get PDF
    International audienceCombustion of fossil fuel in gasoline and diesel powered vehicles is a major source of aerosol particles in a city. In a street canyon, the number concentration of particles smaller than 300 nm in diameter, which can be inhaled and cause serious health effects, is dominated by particles originating from this source. In this study we measured both, particle number size distribution and traffic density continuously in a characteristic street canyon in Germany for a time period of 6 months. The street canyon with multistory buildings and 4 traffic lanes is very typical for larger cities. Thus, the measurements also are representative for many other street canyons in Europe. In contrast to previous studies, we measured and analyzed the particle number size distribution with high size resolution using a Twin Differential Mobility Analyzer (TDMPS). The measured size range was from 3 to 800 nm, separated into 40 size channels. Correlation coefficients between particle number concentration for integrated size ranges and traffic counts of 0.5 were determined. Correlations were also calculated for each of the 40 size channels of the DMPS system, respectively. We found a maximum of the correlation coefficients for nucleation mode particles in the size range between 10 and 20 nm in diameter. Furthermore, correlations between traffic and particles in dependence of meteorological data were calculated. Relevant parameters were identified by a multiple regression method. In our experiment only wind parameters have influenced the particle number concentration significantly. High correlation coefficients (up to 0.8) could be observed in the lee side of the street canyon for particles in the range between 10 and 100 nm in diameter. These values are significantly higher than correlation coefficients for other wind directions and other particle sizes. A minimum was found in the luff side of the street. These findings are in good agreement with theory of fluid dynamics in street canyons

    Atmospheric number size distributions of soot particles and estimation of emission factors

    Get PDF
    International audienceNumber fractions of externally mixed particles of four different sizes (30, 50, 80, and 150 nm in diameter) were measured using a Volatility Tandem DMA. The system was operated in a street canyon (Eisenbahnstrasse, EI) and at an urban background site (Institute for Tropospheric Research, IfT), both in the city of Leipzig, Germany as well as at a rural site (Melpitz (ME), a village near Leipzig). Intensive campaigns of 3?5 weeks each took place in summer 2003 as well as in winter 2003/2004. The data set thus obtained provides mean number fractions of externally mixed soot particles of atmospheric aerosols in differently polluted areas and different seasons (e.g. at 80 nm on working days, 60% (EI), 22% (IfT), and 6% (ME) in summer and 26% (IfT), and 13% (ME) in winter). Furthermore, a new method is used to calculate the size distribution of these externally mixed soot particles from parallel number size distribution measurements. A decrease of the externally mixed soot fraction with decreasing urbanity and a diurnal variation linked to the daily traffic changes demonstrate, that the traffic emissions have a significant impact on the soot fraction in urban areas. This influence becomes less in rural areas, due to atmospheric mixing and transformation processes. For estimating the source strength of soot particles emitted by vehicles (veh), soot particle emission factors were calculated using the Operational Street Pollution Model (OSPM). The emission factor for an average vehicle was found to be (1.5±0.4)·1014 #/(km·veh). The separation of the emission factor into passenger cars ((5.8±2)·1013 #/(km·veh)) and trucks ((2.5±0.9)·1015 #/(km·veh)) yielded in a 40-times higher emission factor for trucks compared to passenger cars

    Insulin expressing hepatocytes not destroyed in transgenic NOD mice

    Get PDF
    BACKGROUND: The liver has been suggested as a suitable target organ for gene therapy of Type 1 diabetes. However, the fundamental issue whether insulin-secreting hepatocytes in vivo will be destroyed by the autoimmune processes that kill pancreatic β cells has not been fully addressed. It is possible that the insulin secreting liver cells will be destroyed by the immune system because hepatocytes express major histocompatibility complex (MHC) class I molecules and exhibit constitutive Fas expression; moreover the liver has antigen presenting activity. Together with previous reports that proinsulin is a possible autoantigen in the development of Type 1 diabetes, the autoimmune destruction of insulin producing liver cells is a distinct possibility. METHODS: To address this question, transgenic Non-Obese Diabetic (NOD) mice which express insulin in the liver were made using the Phosphoenolpyruvate Carboxykinase (PEPCK) promoter to drive the mouse insulin I gene (Ins). RESULTS: The liver cells were found to possess preproinsulin mRNA, translate (pro)insulin in vivo and release it when exposed to 100 nmol/l glucagon in vitro. The amount of insulin produced was however significantly lower than that produced by the pancreas. The transgenic PEPCK-Ins NOD mice became diabetic at 20–25 weeks of age, with blood glucose levels of 24.1 ± 1.7 mmol/l. Haematoxylin and eosin staining of liver sections from these transgenic NOD PEPCK-Ins mice revealed the absence of an infiltrate of immune cells, a feature that characterised the pancreatic islets of these mice. CONCLUSIONS: These data show that hepatocytes induced to produce (pro)insulin in NOD mice are not destroyed by an ongoing autoimmune response; furthermore the expression of (pro)insulin in hepatocytes is insufficient to prevent development of diabetes in NOD mice. These results support the use of liver cells as a potential therapy for type 1 diabetes. However it is possible that a certain threshold level of (pro)insulin production might have to be reached to trigger the autoimmune response

    A Simulation Study of Spectral Cerenkov Luminescence Imaging for Tumour Margin Estimation

    Get PDF
    Breast cancer is the most common cancer in women in the world. Breast-conserving surgery (BCS) is a standard surgical treatment for breast cancer with the key objective of removing breast tissue, maintaining a negative surgical margin and providing a good cosmetic outcome. A positive surgical margin, meaning the presence of cancerous tissues on the surface of the breast specimen after surgery, is associated with local recurrence after therapy. In this study, we investigate a new imaging modality based on Cerenkov luminescence imaging (CLI) for the purpose of detecting positive surgical margins during BCS. We develop Monte Carlo (MC) simulations using the Geant4 nuclear physics simulation toolbox to study the spectrum of photons emitted given 18F-FDG and breast tissue properties. The resulting simulation spectra show that the CLI signal contains information that may be used to estimate whether the cancerous cells are at a depth of less than 1 mm or greater than 1 mm given appropriate imaging system design and sensitivity. The simulation spectra also show that when the source is located within 1 mm of the surface, the tissue parameters are not relevant to the model as the spectra do not vary significantly. At larger depths, however, the spectral information varies significantly with breast optical parameters, having implications for further studies and system design. While promising, further studies are needed to quantify the CLI response to more accurately incorporate tissue specific parameters and patient specific anatomical details

    Design and performance of an automatic regenerating adsorption aerosol dryer for continuous operation at monitoring sites

    Get PDF
    Sizes of aerosol particles depend on the relative humidity of their carrier gas. Most monitoring networks require therefore that the aerosol is dried to a relative humidity below 50% r.H. to ensure comparability of measurements at different sites. Commercially available aerosol dryers are often not suitable for this purpose at remote monitoring sites. Adsorption dryers need to be regenerated frequently and maintenance-free single column Nafion dryers are not designed for high aerosol flow rates. We therefore developed an automatic regenerating adsorption aerosol dryer with a design flow rate of 1 m3/h. Particle transmission efficiency of this dryer has been determined during a 3 week experiment. The lower 50% cut-off was found to be smaller than 3 nm at the design flow rate of the instrument. Measured transmission efficiencies are in good agreement with theoretical calculations. One dryer has been successfully deployed in the Amazon river basin. We present data from this monitoring site for the first 6 months of measurements (February 2008–August 2008). Apart from one unscheduled service, this dryer did not require any maintenance during this time period. The average relative humidity of the dried aerosol was 27.1+/−7.5% r.H. compared to an average ambient relative humidity of nearly 80% and temperatures around 30°C. This initial deployment demonstrated that these dryers are well suitable for continuous operation at remote monitoring sites under adverse ambient conditions

    Spatio-temporal variability and principal components of the particle number size distribution in an urban atmosphere

    Get PDF
    A correct description of fine (diameter <1 μm) and ultrafine (<0.1 μm) aerosol particles in urban areas is of interest for particle exposure assessment but also basic atmospheric research. We examined the spatio-temporal variability of atmospheric aerosol particles (size range 3–800 nm) using concurrent number size distribution measurements at a maximum of eight observation sites in and around Leipzig, a city in Central Europe. Two main experiments were conducted with different time span and number of observation sites (2 years at 3 sites; 1 month at 8 sites). A general observation was that the particle number size distribution varied in time and space in a complex fashion as a result of interaction between local and far-range sources, and the meteorological conditions. To identify statistically independent factors in the urban aerosol, different runs of principal component (PC) analysis were conducted encompassing aerosol, gas phase, and meteorological parameters from the multiple sites. Several of the resulting PCs, outstanding with respect to their temporal persistence and spatial coverage, could be associated with aerosol particle modes: a first accumulation mode ("droplet mode", 300–800 nm), considered to be the result of liquid phase processes and far-range transport; a second accumulation mode (centered around diameters 90–250 nm), considered to result from primary emissions as well as aging through condensation and coagulation; an Aitken mode (30–200 nm) linked to urban traffic emissions in addition to an urban and a rural Aitken mode; a nucleation mode (5–20 nm) linked to urban traffic emissions; nucleation modes (3–20 nm) linked to photochemically induced particle formation; an aged nucleation mode (10–50 nm). Additional PCs represented only local sources at a single site, or infrequent phenomena. In summary, the analysis of size distributions of high time and size resolution yielded a surprising wealth of statistical aerosol components occurring in the urban atmosphere over one single city. A paradigm on the behaviour of sub-μm urban aerosol particles is proposed, with recommendations how to efficiently monitor individual sub-fractions across an entire city

    Tomosynthesis method for depth resolution of beta emitters

    Get PDF
    The motivation of this study derives from the need for tumour margin estimation after surgical excision. Conventional beta autoradiography of beta emitters can be used to image tissue sections providing high spatial resolution compared to in-vivo molecular imaging. However, it requires sectioning of the specimen and it provides a 2D image of the tissue. Imaging of the 3D tissue sample can be achieved either by imaging sequential 2D sections, which is time-consuming and laborious, or by using a specialised detector for imaging that records the particles’ direction, in addition to their position, when they hit the detector. In this work we investigate whether a novel beta-tomosynthesis approach can be used for depth resolution of beta emitters. The technique involves acquiring multiple 2D images of the intact tissue sample while the detector rotates around the sample. The images are then combined and used to reconstruct the 3D position of the sources from a limited angle of conventional 2D autoradiography images. We present the results from Geant4 forward simulations and the reconstructed images from a breast tissue sample containing a Fluorine-18 positron emission source. The experiments show that the proposed method can provide depth resolution under certain conditions, indicating that there is potential for its use as a 3D molecular imaging technique of surgical samples in the future

    Mobility particle size spectrometers: Calibration procedures and measurement uncertainties

    Get PDF
    Mobility particle size spectrometers (MPSS) belong to the essential instruments in aerosol science that determine the particle number size distribution (PNSD) in the submicrometer size range. Following calibration procedures and target uncertainties against standards and reference instruments are suggested for a complete MPSS quality assurance program: (a) calibration of the CPC counting efficiency curve (within 5% for the plateau counting efficiency; within 1 nm for the 50% detection efficiency diameter), (b) sizing calibration of the MPSS, using a certified polystyrene latex (PSL) particle size standard at 203 nm (within 3%), (c) intercomparison of the PNSD of the MPSS (within 10% and 20% of the dN/dlogDP concentration for the particle size range 20–200 and 200–800 nm, respectively), and (d) intercomparison of the integral PNC of the MPSS (within 10%). Furthermore, following measurement uncertainties have been investigated: (a) PSL particle size standards in the range from 100 to 500 nm match within 1% after sizing calibration at 203 nm. (b) Bipolar diffusion chargers based on the radioactive nuclides Kr85, Am241, and Ni63 and a new ionizer based on corona discharge follow the recommended bipolar charge distribution, while soft X-ray-based charges may alter faster than expected. (c) The use of a positive high voltage supply show a 10% better performance than a negative one. (d) The intercomparison of the integral PNC of an MPSS against the total number concentration is still within the target uncertainty at an ambient pressure of approximately 500 hPa
    corecore