77 research outputs found

    Embryotoxicity of Nine Seed Mordants in the Chick Embryo - the Chest Method

    Full text link

    Identification and categorisation of safety issues for ESNII reactor concepts. Part I: Common phenomena related to materials

    Get PDF
    International audience; With the aim to develop a joint proposal for a harmonised European methodology for safety assessment of advanced reactors with fast neutron spectrum, SARGEN-IV (Safety Assessment for Reactors of Gen IV) Euratom coordination action project gathered together twenty-two partners' safety experts from twelve EU Member States. The group consisted of eight European Technical Safety Organisations involved in the European Technical Safety Organisation Network (ETSON), European Commission's Joint Research Centre (JRC), system designers, industrial vendors as well as research and development (RandD) organisations. To support the methodology development, key safety features of four fast neutron spectrum reactor concepts considered in Deployment Strategy of the Sustainable Nuclear Energy Technology Platform (SNETP) were reviewed. In particular, outcomes from running European Sustainable Nuclear Industrial Initiative (ESNII) system projects and related Euratom collaborative projects for Sodium-cooled Fast Reactors, Lead-cooled Fast Reactors, Gas-cooled Fast Reactors, and the lead-bismuth eutectic cooled Fast Spectrum Transmutation Experimental Facility were gathered and critically assessed. To allow a consistent build-up of safety architecture for the ESNII reactor concepts, the safety issues were further categorised to identify common phenomena related to materials. Outcomes of the present work also provided guidance for the identification and prioritisation of further RandD needs respective to the identified safety issues. © 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-NDlicense

    Decision support tools and strategies to simulate forest landscape evolutions integrating forest owner behaviour: a review from the case studies of the European Project, INTEGRAL

    Get PDF
    For forest sustainability and vulnerability assessment, the landscape scale is considered to be more and more relevant as the stand level approaches its known limitations. This review, which describes the main forest landscape simulation tools used in the 20 European case studies of the European project “Future-oriented integrated management of European forest landscapes” (INTEGRAL), gives an update on existing decision support tools to run landscape simulation from Mediterranean to boreal ecosystems. The main growth models and software available in Europe are described, and the strengths and weaknesses of different approaches are discussed. Trades-offs between input efforts and output are illustrated. Recommendations for the selection of a forest landscape simulator are given. The paper concludes by describing the need to have tools that are able to cope with climate change and the need to build more robust indicators for assessment of forest landscape sustainability and vulnerability.The INTEGRAL project has received funding from the European Union’s Seventh Programme for research, technological development and demonstration under grant agreement No. 282887. http://www. integral-project.eu/. Moreover, financial support by the Transnational Access to Research Infrastructures activity in the 7th Framework Programme of the EC under the Trees4Future project (No. 284181) for conducting the research is gratefully acknowledged. This research has also received funding from the European Union H2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No. 691149 (SuFoRun). Researcher Jordi Garcia-Gonzalo was supported by a “Ramon y Cajal” research contract from the MINECO (Ref. RYC-2013-14262) and has received funding from CERCA Programme/Generalitat de Catalunya. This paper could be achieved thanks to support of EFIATLANTIC donors: Conseil regional d’Aquitaine, Ministère de l’agriculture et de la forêt

    Design of experiment for measurement of Langevin function

    No full text
    The presented study focuses on a confrontation of the theory of regression models and theory of experiment with the real situation of determining properties of magnetic (nano)materials. Their magnetic properties can be deduced by measuring their magnetization, being the fundamental magnetic quantity of an arbitrary (nano)material. The results of the magnetization measurements determine the unknown parameters of a known nonlinear function that characterizes the (nano)material under investigation. Knowledge of the values of the unknown parameters enables to decide whether the (nano)material is suitable or not for a particular application. Thus, in this work, we present a possible approach how to estimate the unknown parameters of the nonlinear function by the regression models, taking into account a relevant linearization criterion. Then, we suggest an appropriate design for the measurement to get better estimators of the parameters

    A Psychophysiological Analysis of Weak Annoyances in Human Computer Interfaces

    No full text
    Abstract. Usability studies for large safety critical systems face a number of challenges. One particular challenge that this paper addresses is weak annoyance. Weak annoyances occur without being consciously detectable by some users; however, they become hazards in an operating environment as they impact on user performance. In this paper, we hypothesise and demonstrate that weak annoyances are objectively detectable. We use the game of Sudoku as an abstraction for a spatial problem-solving task. We then use a range of psychophysiological measurements and metrics to demonstrate a methodology for detecting weak annoyances, and thus, comparing the usability of different user graphical interfaces. 's [9] stance that "the researchers should be measuring multiple signals rather than relying on one". Moreover, in the same paper, Wilson and Sasse argue that insights can be gained from these measurements "that cannot be obtained from subjective responses and observational assessment." Keyword

    3D flow in the axial-radial exhaust hood of a steam turbine

    No full text

    Depletion analysis of the HELIOS experiment using the MCB code

    No full text
    The focus of our studies is to present an advanced depletion analysis of the HELIOS experiment by means of the Monte Carlo continuous energy burn-up code (MCB). The MCB was used mainly to calculate nuclide density evolution in nuclear reactor cores. We present the capability of the MCB to investigate the depletion of nuclear fuel samples irradiated in the HELIOS experiment. In our studies we traced the behaviour of the main fissile isotopes, 242mAm and 239Pu, respectively. We also perform a sensitivity analysis to the choice of JEF2.2 and JEFF3.1 cross section libraries in terms of the released fission power and the evolution of actinide inventories. The amount of He produced at the end of irradiation, as well as Am and Pu depletion, were also considered
    corecore