18 research outputs found
Solar Lyman-Alpha Polarization Observation of the Chromosphere and Transition Region by the Sounding Rocket Experiment CLASP
We are planning an international rocket experiment Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP) is (2015 planned) that Lyman line (Ly(alpha) line) polarization spectroscopic observations from the sun. The purpose of this experiment, detected with high accuracy of the linear polarization of the Ly(alpha) lines to 0.1% by using a Hanle effect is to measure the magnetic field of the chromosphere-transition layer directly. For polarization photometric accuracy achieved that approx. 0.1% required for CLASP, it is necessary to realize the monitoring device with a high throughput. On the other hand, Ly(alpha) line (vacuum ultraviolet rays) have a sensitive characteristics that is absorbed by the material. We therefore set the optical system of the reflection system (transmission only the wavelength plate), each of the mirrors, subjected to high efficiency of the multilayer coating in accordance with the role. Primary mirror diameter of CLASP is about 30 cm, the amount of heat about 30,000 J is about 5 minutes of observation time is coming mainly in the visible light to the telescope. In addition, total flux of the sun visible light overwhelmingly large and about 200 000 times the Ly(alpha) line wavelength region. Therefore, in terms of thermal management and 0.1% of the photometric measurement accuracy achieved telescope, elimination of the visible light is essential. We therefore, has a high reflectivity (> 50%) in Ly line, visible light is a multilayer coating be kept to a low reflectance (<5%) (cold mirror coating) was applied to the primary mirror. On the other hand, the efficiency of the polarization analyzer required chromospheric magnetic field measurement (the amount of light) Conventional (magnesium fluoride has long been known as a material for vacuum ultraviolet (MgF2) manufactured ellipsometer; Rs = 22%) about increased to 2.5 times were high efficiency reflective polarizing element analysis. This device, Bridou et al. (2011) is proposed "that is coated with a thin film of the substrate MgF2 and SiO2 fused silica." As a result of the measurement, Rs = 54.5%, to achieve a Rp = 0.3%, high efficiency, of course, capable of taking out only about s-polarized light. Other reflective optical elements (the secondary mirror, the diffraction gratingcollector mirror), subjected to high-reflection coating of Al + MgF2 (reflectance of about 80%), less than 5% in the entire optical system by these (CCD Science was achieved a high throughput as a device for a vacuum ultraviolet ray of the entire system less than 5% (CCD of QE is not included)
Simulation and Measurement of Stray Light in the CLASP
We are planning an international rocket experiment Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP) is (2015 planned) that Lyman Alpha line polarization spectroscopic observations from the sun. The purpose of this experiment, detected with high accuracy of the linear polarization of the Ly lines to 0.1% by using a Hanle effect is to measure the magnetic field of the chromosphere-transition layer directly. For total flux of the sun visible light overwhelmingly larger and about 200 000 times the Ly line wavelength region, also hinder to 0.1% of the polarization photometric accuracy achieved in the stray light of slight visible light. Therefore we were first carried out using the illumination design analysis software called stray light simulation CLASP Light Tools. Feature of this simulation, using optical design file (ZEMAX format) and structural design file (STEP format), to reproduce realistic CLASP as possible to calculate machine is that it was stray study. And, at the stage in the actual equipment that made the provisional set of CLASP, actually put sunlight into CLASP using coelostat of National Astronomical Observatory of Japan, was subjected to measurement of stray light (San test). Pattern was not observed in the simulation is observed in the stray light measurement results need arise that measures. However, thanks to the stray light measurement and simulation was performed by adding, it was found this pattern is due to the diffracted light at the slit. Currently, the simulation results is where you have taken steps to reference. In this presentation, we report the stray light simulation and stray light measurement results that we have implemente
Upgrading of shielding for rare decay search in CANDLES
In the CANDLES experiment aiming to search for the very rare neutrino-less double beta decays (0νββ) using 48Ca, we introduced a new shielding system for high energy γ-rays from neutron captures in massive materials near the detector, in addition to the background reduction for 232Th decays in the 0νββ target of CaF2 crystals. The method of background reduction and the performance of newly installed shielding system are described
Polarimetric calibration of a spectropolarimeter instrument with high precision: Sunrise chromospheric infrared spectropolarimeter (SCIP) for the sunrise iii balloon telescope
The Sunrise chromospheric infrared spectropolarimeter (SCIP) installed in the international balloon experiment sunrise iii will perform spectropolarimetric observations in the near-infrared band to measure solar photospheric and chromospheric magnetic fields simultaneously. The main components of SCIP for polarization measurements are a rotating wave plate, polarization beam splitters, and CMOS imaging sensors. In each of the sensors, SCIP records the orthogonal linearly polarized components of light. The polarization is later demodulated on-board. Each sensor covers one of the two distinct wavelength regions centered at 770 and 850 nm. To retrieve the proper circular polarization, the new parameter , defined as the 45° phase shifted component of Stokes in the modulation curve, is introduced. SCIP is aimed at achieving high polarization precision (1<3×10−4 of continuum intensity) to capture weak polarization signals in the chromosphere. The objectives of the polarization calibration test presented in this paper are to determine a response matrix of SCIP and to measure its repeatability and temperature dependence to achieve the required polarization precision. Tolerances of the response matrix elements were set after considering typical photospheric and chromospheric polarization signal levels. We constructed a feed optical system such that a telecentric beam can enter SCIP with the same -number as the light distribution instrument of the sunrise iii telescope. A wire-grid linear polarizer and achromatic wave plate were placed before SCIP to produce the known polarization. The obtained response matrix was close to the values expected from the design. The wavelength and spatial variations, repeatability, and temperature dependence of the response matrix were confirmed to be smaller than tolerances. © 2022 Optica Publishing Group.Japan Society for the Promotion of Science KAKENHI (JP18H05234); Max Planck Foundation; National Aeronautics and Space Administration (#80NSSC18K0934); ISAS/JAXA Small Mission-of Opportunity Program; Spanish Research Agency (RTI2018-096886-B-C5); Centro de Excelencia Severo Ochoa Program (SEV-2017-0709).Peer reviewe
Robust hitting with dynamics shaping
Abstract—The present paper proposes the motion planning based on “the dynamics shaping ” for a robotic arm to hit the target robustly toward the desired direction, of which the concept is to shape the robot dynamics appropriately in order to accomplish the desired motion. According to the linear system theory, the positional error of the end-point converges onto near the singular vector corresponding to its maximum singular value of the output controllability matrix of the robotic arm. Therefore, if we can control the direction of the singular vector by applying the dynamics shaping, we will be able to control the direction of the positional error of the end-effector caused by the disturbance. We propose a novel motion planning based on the dynamics shaping and verify numerically and experimentally that the robotic arm can robustly hit the target toward the desired direction with a simple open-loop control system even though the disturbance is applied. I
SUNRISE Chromospheric Infrared spectroPolarimeter (SCIP) for SUNRISE III: Scan mirror mechanism
Ground-Based and Airborne Telescopes VIII 2020; Virtual, Online; United States; 14 December 2020 through 22 December 2020; Code 166573.--Proceedings of SPIE - The International Society for Optical Engineering Volume 11445, 2020, Article number 114454FThe SUNRISE Chromospheric Infrared spectroPolarimeter (SCIP) is a balloon-borne long-slit spectrograph for SUNRISE III to precisely measure magnetic fields in the solar atmosphere. The scan mirror mechanism (SMM) is installed in the optical path to the entrance slit of the SCIP to move solar images focused on the slit for 2-dimensional mapping. The SMM is required to have (1) the tilt stability better than 0.035″ (3σ) on the sky angle for the diffraction-limited spatial resolution of 0.2″, (2) step response shorter than 32 msec for rapid scanning observations, and (3) good linearity (i.e. step uniformity) over the entire field-of-view (60″x60″). To achieve these performances, we have developed a flight-model mechanism and its electronics, in which the mirror tilt is controlled by electromagnetic actuators with a closed-loop feedback logic with tilt angles from gap-based capacitance sensors. Several optical measurements on the optical bench verified that the mechanism meets the requirements. In particular, the tilt stability achives better than 0.012″ (3σ). Thermal cycling and thermal vacuum tests have been completed to demonstrate the performance in the vacuum and the operational temperature range expected in the balloon flight. We found a small temperature dependence in the step uniformity and this dependence will be corrected to have 2-demensional maps with the sub-arcsec spatial accuracy in the data post-processing. © COPYRIGHT SPIE.The SUNRISE III project is funded in Japan by the ISAS/JAXA Small Mission-of-Opportunity program for novel solar observations, JSPS KAKENHI Grant Number 18H05234 (PI:Y.Katsukawa), and NAOJ Research Coordination Committee, NINS. We would also thank significant technical support from the Advanced Technology Center (ATC), NAOJ
Development of Fast and Precise Scan Mirror Mechanism for an Airborne Solar Telescope
We developed a scan mirror mechanism (SMM) that enable a slit-based spectrometer or spectropolarimeter to precisely and quickly map an astronomical object. The SMM, designed to be installed in the optical path preceding the entrance slit, tilts a folding mirror and then moves the reflected image laterally on the slit plane, thereby feeding a different one-dimensional image to be dispersed by the spectroscopic equipment. In general, the SMM is required to scan quickly and broadly while precisely placing the slit position across the field-of-view (FOV). These performances are in high demand for near-future observations, such as studies on the magnetohydrodynamics of the photosphere and the chromosphere. Our SMM implements a closed-loop control system by installing electromagnetic actuators and gap-based capacitance sensors. Our optical test measurements confirmed that the SMM fulfills the following performance criteria: i) supreme scan-step uniformity (linearity of 0.08%) across the wide scan range (±1005′′), ii) high stability (3σ=0.1′′), where the angles are expressed in mechanical angle, and iii) fast stepping speed (26 ms). The excellent capability of the SMM will be demonstrated soon in actual use by installing the mechanism for a near-infrared spectropolarimeter onboard the balloon-borne solar observatory for the third launch, SUNRISE III. © 2022, The Author(s), under exclusive licence to Springer Nature B.V.The balloon-borne solar observatory SUNRISE III is a mission of the Max Planck Institute for Solar System Research (MPS, Germany), and the Johns Hopkins Applied Physics Laboratory (APL, USA). SUNRISE III looks at the Sun from the stratosphere using a 1-meter telescope, three scientific instruments, and an image stabilization system. Significant contributors to the mission are a Spanish consortium, the National Astronomical Observatory of Japan (NAOJ, Japan), and the Leibniz Institute for Solar Physics (KIS, Germany). The Spanish consortium is led by the Instituto de Astrofísica de Andalucía (IAA, Spain) and includes the Instituto Nacional de Técnica Aeroespacial (INTA), Universitat de València (UV), Universidad Politécnica de Madrid (UPM) and the Instituto de Astrofísica de Canarias (IAC). Other partners include NASA’s Wallops Flight Facility Balloon Program Office (WFF-BPO) and the Swedish Space Corporation (SSC). SUNRISE III is supported by funding from the Max Planck Foundation, NASA under Grant #80NSSC18K0934, Spanish FEDER/AEI/MCIU (RTI2018-096886-C5) and a “Center of Excellence Severo Ochoa” award to IAA-CSIC (SEV-2017-0709), and the ISAS/JAXA Small Mission-of-Opportunity program and JSPS KAKENHI JP18H05234, and NAOJ Research Coordination Committee, NINS. We would also thank significant technical support from the Advanced Technology Center (ATC), NAOJ. We would like to thank Editage (www.editage.com) for English language editing.Peer reviewe