53 research outputs found

    Ion-beam-hydrogenated amorphous silicon

    Get PDF
    A kaufman ion-beam source has been used to study the rehydrogenation and postdeposition hydrogenation of amorphous silicon. In the rehydrogenation study, hydrogen atoms were implanted into glow-dischargedeposited amorphous silicon materials in which the hydrogen content had been driven out by heating. In the posthydrogenation study, amorphous silicon samples with no hydrogen content detectable by infrared absorption and no photoconductivity were used as the starting material. These materials were deposited by thermal CVD, magnetron sputtering, or RF glow discharge

    LaF3 insulators for MIS structures

    Get PDF
    Thin films of Laf3 deposited on Si or GaAs substrates have been observed to form blocking contacts with very high capacitances. This results in comparatively‐hysteresis‐free and sharpC‐V (capacitance‐voltage) characteristics for MIS structures. Such structures have been used to study the interface states of GaAs with increased resolution and to construct improved photocapacitive infrared detectors

    Bone mass in schizophrenia and normal populations across different decades of life

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Chronic schizophrenic patients have been reported as having higher osteoporosis prevalence. Survey the bone mass among schizophrenic patients and compare with that of the local community population and reported data of the same country to figure out the distribution of bone mass among schizophrenic patients.</p> <p>Methods</p> <p>965 schizophrenic patients aged 20 years and over in Yuli Veterans Hospital and 405 members aged 20 and over of the community living in the same town as the institute received bone mass examination by a heel qualitative ultrasound (QUS) device. Bone mass distribution was stratified to analyzed and compared with community population.</p> <p>Results</p> <p>Schizophrenic patients have lower bone mass while they are young. But aging effect on bone mass cannot be seen. Accelerated bone mass loss during menopausal transition was not observed in the female schizophrenic patients as in the subjects of the community female population.</p> <p>Conclusion</p> <p>Schizophrenic patients have lower bone mass than community population since they are young. Further study to investigate the pathophysiological process is necessary to delay or avoid the lower bone mass in schizophrenia patients.</p

    Socio-demographic and health-related factors associated with cognitive impairment in the elderly in Taiwan

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cognitive impairment is an age-related condition as the rate of cognitive decline rapidly increases with aging. It is especially important to better understand factors involving in cognitive decline for the countries where the older population is growing rapidly. The aim of this study was to examine the association between socio-demographic and health-related factors and cognitive impairment in the elderly in Taiwan.</p> <p>Methods</p> <p>We analysed data from 2119 persons aged 65 years and over who participated in the 2005 National Health Interview Survey. Cognitive impairment was defined as having the score of the Mini Mental State Examination lower than 24. The χ<sup>2 </sup>test and multiple logistic regression models were used to evaluate the association between cognitive impairment and variables of socio-demography, chronic diseases, geriatric conditions, lifestyle, and dietary factors.</p> <p>Results</p> <p>The prevalence of cognitive impairment was 22.2%. Results of multivariate analysis indicated that low education, being single, low social support, lower lipid level, history of stroke, physical inactivity, non-coffee drinking and poor physical function were associated with a higher risk of cognitive impairment.</p> <p>Conclusion</p> <p>Most of the characteristics in relation to cognitive impairment identified in our analysis are potentially modifiable. These results suggest that improving lifestyle behaviours such as regular exercise and increased social participation could help prevent or decrease the risk of cognitive impairment. Further investigations using longitudinal data are needed to clarify our findings.</p

    Maximization of propylene in an industrial FCC unit

    Get PDF
    YesThe FCC riser cracks gas oil into useful fuels such as gasoline, diesel and some lighter products such as ethylene and propylene, which are major building blocks for the polyethylene and polypropylene production. The production objective of the riser is usually the maximization of gasoline and diesel, but it can also be to maximize propylene. The optimization and parameter estimation of a six-lumped catalytic cracking reaction of gas oil in FCC is carried out to maximize the yield of propylene using an optimisation framework developed in gPROMS software 5.0 by optimizing mass flow rates and temperatures of catalyst and gas oil. The optimal values of 290.8 kg/s mass flow rate of catalyst and 53.4 kg/s mass flow rate of gas oil were obtained as propylene yield is maximized to give 8.95 wt%. When compared with the base case simulation value of 4.59 wt% propylene yield, the maximized propylene yield is increased by 95%

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Get PDF
    Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2–4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease

    SARS-CoV-2 susceptibility and COVID-19 disease severity are associated with genetic variants affecting gene expression in a variety of tissues

    Get PDF
    Variability in SARS-CoV-2 susceptibility and COVID-19 disease severity between individuals is partly due to genetic factors. Here, we identify 4 genomic loci with suggestive associations for SARS-CoV-2 susceptibility and 19 for COVID-19 disease severity. Four of these 23 loci likely have an ethnicity-specific component. Genome-wide association study (GWAS) signals in 11 loci colocalize with expression quantitative trait loci (eQTLs) associated with the expression of 20 genes in 62 tissues/cell types (range: 1:43 tissues/gene), including lung, brain, heart, muscle, and skin as well as the digestive system and immune system. We perform genetic fine mapping to compute 99% credible SNP sets, which identify 10 GWAS loci that have eight or fewer SNPs in the credible set, including three loci with one single likely causal SNP. Our study suggests that the diverse symptoms and disease severity of COVID-19 observed between individuals is associated with variants across the genome, affecting gene expression levels in a wide variety of tissue types

    New insights into the genetic etiology of Alzheimer's disease and related dementias

    Get PDF
    Characterization of the genetic landscape of Alzheimer's disease (AD) and related dementias (ADD) provides a unique opportunity for a better understanding of the associated pathophysiological processes. We performed a two-stage genome-wide association study totaling 111,326 clinically diagnosed/'proxy' AD cases and 677,663 controls. We found 75 risk loci, of which 42 were new at the time of analysis. Pathway enrichment analyses confirmed the involvement of amyloid/tau pathways and highlighted microglia implication. Gene prioritization in the new loci identified 31 genes that were suggestive of new genetically associated processes, including the tumor necrosis factor alpha pathway through the linear ubiquitin chain assembly complex. We also built a new genetic risk score associated with the risk of future AD/dementia or progression from mild cognitive impairment to AD/dementia. The improvement in prediction led to a 1.6- to 1.9-fold increase in AD risk from the lowest to the highest decile, in addition to effects of age and the APOE ε4 allele
    corecore