15 research outputs found

    Novel pH-dependent regulation of human cytosolic sialidase 2 (NEU2) activities by siastatin B and structural prediction of NEU2/siastatin B complex

    Get PDF
    Human cytosolic sialidase (Neuraminidase 2, NEU2) catalyzes the removal of terminal sialic acid residues from glycoconjugates. The effect of siastatin B, known as a sialidase inhibitor, has not been evaluated toward human NEU2 yet. We studied the regulation of NEU2 activity by siastatin B in vitro and predicted the interaction in silico. Inhibitory and stabilizing effects of siastatin B were analyzed in comparison with DANA (2-deoxy-2,3-dehydro-N-acetylneuraminic acid) toward 4-umbelliferyl N-acetylneuraminic acid (4-MU-NANA)- and α2,3-sialyllactose-degrading activities of recombinant NEU2 produced by E. coli GST-fusion gene expression. Siastatin B exhibited to have higher competitive inhibitory activity toward NEU2 than DANA at pH 4.0. We also revealed the stabilizing effect of siastatin B toward NEU2 activity at acidic pH. Docking model was constructed on the basis of the crystal structure of NEU2/DANA complex (PDB code: 1VCU). Molecular docking predicted that electrostatic neutralization of E111 and E218 residues of the active pocket should not prevent siastatin B from binding at pH 4.0. The imino group (1NH) of siastatin B can also interact with D46, neutralized at pH 4.0. Siastatin B was suggested to have higher affinity to the active pocket of NEU2 than DANA, although it has no C7–9 fragment corresponding to that of DANA. We demonstrated here the pH-dependent affinity of siastatin B toward NEU2 to exhibit potent inhibitory and stabilizing activities. Molecular interaction between siastatin B and NEU2 will be utilized to develop specific inhibitors and stabilizers (chemical chaperones) not only for NEU2 but also the other human sialidases, including NEU1, NEU3 and NEU4, based on homology modeling

    A new heterozygous compound mutation in the CTSA gene in galactosialidosis

    Get PDF
    Galactosialidosis is an autosomal recessive lysosomal storage disease caused by the combined deficiency of lysosomal β-galactosidase and neuraminidase due to a defect in the protective protein/cathepsin A. Patients present with various clinical manifestations and are classified into three types according to the age of onset: the early infantile type, the late infantile type, and the juvenile/adult type. We report a Japanese female case of juvenile/adult type galactosialidosis. Clinically, she presented with short stature, coarse facies, angiokeratoma, remarkable action myoclonus, and cerebellar ataxia. The patient was diagnosed with galactosialidosis with confirmation of impaired β-galactosidase and neuraminidase function in cultured skin fibroblasts. Sanger sequencing for CTSA identified a compound heterozygous mutation consisting of NM_00308.3(CTSA):c.746 + 3A>G and c.655-1G>A. Additional analysis of her mother’s DNA sequence indicated that the former mutation originated from her mother, and therefore the latter was estimated to be from the father or was a de novo mutation. Both mutations are considered pathogenic owing to possible splicing abnormalities. One of them (c.655-1G>A) is novel because it has never been reported previously

    Traceless synthesis of protein thioesters using enzyme-mediated hydrazinolysis and subsequent self-editing of cysteinyl prolyl sequence

    Get PDF
    A traceless thioester-producing protocol featuring carboxypeptidase Y-mediated hydrazinolysis of cysteinyl prolyl leucine-tagged peptides has been developed. The hydrazinolysis followed by thioesterification affords cysteinyl prolyl thioesters. Self-editing of the tag and subsequent trans-thioesterification yields peptide thioesters. The developed protocol was successfully applied to conversion of recombinant proteins to thioesters

    Reversal of neuroinflammation in novel GS model mice by single i.c.v. administration of CHO-derived rhCTSA precursor protein

    Get PDF
    Galactosialidosis (GS) is a lysosomal cathepsin A (CTSA) deficiency. It associates with a simultaneous decrease of neuraminidase 1 (NEU1) activity and sialylglycan storage. Central nervous system (CNS) symptoms reduce the quality of life of juvenile/adult-type GS patients, but there is no effective therapy. Here, we established a novel GS model mouse carrying homozygotic Ctsa IVS6+1g→a mutation causing partial exon 6 skipping with concomitant deficiency of Ctsa/Neu1. The GS mice developed juvenile/adult GS-like symptoms, such as gargoyle-like face, edema, proctoprosia due to sialylglycan accumulation, and neurovisceral inflammation, including activated microglia/macrophage appearance and increase of inflammatory chemokines. We produced human CTSA precursor proteins (proCTSA), a homodimer carrying terminal mannose 6-phosphate (M6P)-type N-glycans. The CHO-derived proCTSA was taken up by GS patient-derived fibroblasts via M6P receptors and delivered to lysosomes. Catalytically active mature CTSA showed a shorter half-life due to intralysosomal proteolytic degradation. Following single i.c.v. administration, proCTSA was widely distributed, restored the Neu1 activity, and reduced the sialylglycans accumulated in brain regions. Moreover, proCTSA suppressed neuroinflammation associated with reduction of activated microglia/macrophage and up-regulated Mip1α. The results show therapeutic effects of intracerebrospinal enzyme replacement utilizing CHO-derived proCTSA and suggest suppression of CNS symptoms

    A new heterozygous compound mutation in the CTSA gene in galactosialidosis

    Get PDF
    Galactosialidosis is an autosomal recessive lysosomal storage disease caused by the combined deficiency of lysosomal β-galactosidase and neuraminidase due to a defect in the protective protein/cathepsin A. Patients present with various clinical manifestations and are classified into three types according to the age of onset: the early infantile type,the late infantile type, and the juvenile/adult type. We report a Japanese female case of juvenile/adult type galactosialidosis. Clinically, she presented with short stature, coarse facies, angiokeratoma, remarkable action myoclonus, and cerebellar ataxia.The patient was diagnosed with galactosialidosis with confirmation of impaired β-galactosidase and neuraminidase function in cultured skin fibroblasts. Sanger sequencing for CTSA identified a compound heterozygous mutation consisting of NM_00308.3(CTSA):c.746 + 3A>G and c.655-1G>A. Additional analysis of her mother’s DNA sequence indicated that the former mutation originated from her mother, and therefore the latter was estimated to be from the father or was a de novo mutation. Both mutations are considered pathogenic owing to possible splicing abnormalities. One of them (c.655-1G>A) is novel because it has never been reported previously

    Improvement of Production and Isolation of Human Neuraminidase-1 in Cellulo Crystals

    No full text
    In cellulo crystallization is a developing technique to provide crystals for protein structure determination, particularly for proteins that are difficult to prepare by in vitro crystallization. This method has a key advantage: It requires neither a protein purification step nor a crystallization step. However, there is still no systematic strategy for improving the technique of in cellulo crystallization because the process occurs spontaneously. Here we report a protocol to produce and extract in cellulo crystals of human lysosomal neuraminidase-1 (NEU1) in human cultured cells. Overexpression of NEU1 protein by the retransfection of cells pretransfected with neu1-overexpressing plasmid improved the efficiency of NEU1 crystallization. Microscopic analysis revealed that NEU1 proteins were not crystallized in the lysosome but in the endoplasmic reticulum (ER). Screening of the buffer conditions used to extract crystals from cells further improved the crystal yield. The optimal pH was 7.0, which corresponds to the pH in the ER. Use of a high-yield flask with a large surface area also yielded more crystals. These optimizations enabled us to execute a serial femtosecond crystallography experiment with a sufficient number of crystals to generate a complete data set. Optimization of the in cellulo crystallization method was thus shown to be possible.Accepted Author ManuscriptBN/Arjen Jakobi La

    Rutile-TiO<sub>2</sub> Nanocoating for a High-Rate Li<sub>4</sub>Ti<sub>5</sub>O<sub>12</sub> Anode of a Lithium-Ion Battery

    No full text
    Well-defined Li<sub>4</sub>Ti<sub>5</sub>O<sub>12</sub> nanosheets terminated with rutile-TiO<sub>2</sub> at the edges were synthesized by a facile solution-based method and revealed directly at atomic resolution by an advanced spherical aberration imaging technique. The rutile-TiO<sub>2</sub> terminated Li<sub>4</sub>Ti<sub>5</sub>O<sub>12</sub> nanosheets show much improved rate capability and specific capacity compared with pure Li<sub>4</sub>Ti<sub>5</sub>O<sub>12</sub> nanosheets when used as anode materials for lithium ion batteries. The results here give clear evidence of the utility of rutile-TiO<sub>2</sub> as a carbon-free coating layer to improve the kinetics of Li<sub>4</sub>Ti<sub>5</sub>O<sub>12</sub> toward fast lithium insertion/extraction. The carbon-free nanocoating of rutile-TiO<sub>2</sub> is highly effective in improving the electrochemical properties of Li<sub>4</sub>Ti<sub>5</sub>O<sub>12</sub>, promising advanced batteries with high volumetric energy density, high surface stability, and long cycle life compared with the commonly used carbon nanocoating in electrode materials
    corecore