326 research outputs found

    Mitochondrial proteomics: analysis of a whole mitochondrial extract with two-dimensional electrophoresis

    Get PDF
    Mitochondria are complex organelles, and their proteomics analysis requires a combination of techniques. The emphasis in this chapter is made first on mitochondria preparation from cultured mammalian cells, then on the separation of the mitochondrial proteins with two-dimensional electrophoresis (2DE), showing some adjustment over the classical techniques to improve resolution of the mitochondrial proteins. This covers both the protein solubilization, the electrophoretic part per se, and the protein detection on the gels, which makes the interface with the protein identification part relying on mass spectrometry

    Altered Backbone and Side-Chain Interactions Result in Route Heterogeneity during the Folding of Interleukin-1b (IL-1b)

    Get PDF
    Deletion of the b-bulge trigger-loop results in both a switch in the preferred folding route, from the functional loop packing folding route to barrel closure, as well as conversion of the agonist activity of IL-1b into antagonist activity. Conversely, circular permutations of IL-1b conserve the functional folding route as well as the agonist activity. These two extremes in the folding-functional interplay beg the question of whether mutations in IL-1b would result in changes in the populations of heterogeneous folding routes and the signaling activity. A series of topologically equivalent water-mediated b-strand bridging interactions within the pseudosymmetric b-trefoil fold of IL-1b highlight the backbone water interactions that stabilize the secondary and tertiary structure of the protein. Additionally, conserved aromatic residues lining the central cavity appear to be essential for both stability and folding. Here, we probe these protein backbone-water molecule and side chain-side chain interactions and the role they play in the folding mechanism of this geometrically stressed molecule. We used folding simulations with structure-based models, as well as a series of folding kinetic experiments to examine the effects of the F42W core mutation on the folding landscape of IL-1b. This mutation alters water-mediated backbone interactions essential for maintaining the trefoil fold. Our results clearly indicate that this perturbation in the primary structure alters a structural water interaction and consequently modulates the population of folding routes accessed during folding and signaling activity

    The representation of protein complexes in the Protein Ontology (PRO)

    Get PDF
    BACKGROUND: Representing species-specific proteins and protein complexes in ontologies that are both human- and machine-readable facilitates the retrieval, analysis, and interpretation of genome-scale data sets. Although existing protin-centric informatics resources provide the biomedical research community with well-curated compendia of protein sequence and structure, these resources lack formal ontological representations of the relationships among the proteins themselves. The Protein Ontology (PRO) Consortium is filling this informatics resource gap by developing ontological representations and relationships among proteins and their variants and modified forms. Because proteins are often functional only as members of stable protein complexes, the PRO Consortium, in collaboration with existing protein and pathway databases, has launched a new initiative to implement logical and consistent representation of protein complexes. DESCRIPTION: We describe here how the PRO Consortium is meeting the challenge of representing species-specific protein complexes, how protein complex representation in PRO supports annotation of protein complexes and comparative biology, and how PRO is being integrated into existing community bioinformatics resources. The PRO resource is accessible at http://pir.georgetown.edu/pro/. CONCLUSION: PRO is a unique database resource for species-specific protein complexes. PRO facilitates robust annotation of variations in composition and function contexts for protein complexes within and between species

    The higher level of organization of the oxidative phosphorylation system: mitochondrial supercomplexes

    Get PDF
    The organization of the oxidative phosphorylation (OXPHOS) system within the inner mitochondrial membrane appears to be far more complicated than previously thought. In particular, the individual protein complexes of the OXPHOS system (complexes I to V) were found to specifically interact forming defined supramolecular structures. Blue-native polyacrylamide gel electrophoresis and single particle electron microscopy proved to be especially valuable in studying the so-called β€œrespiratory supercomplexes”? Based on these procedures, increasing evidence was presented supporting a β€œsolid state” organization of the OXPHOS system. Here, we summarize results on the formation, organisation and function of the various types of mitochondrial OXPHOS supercomplexes

    A Bioinformatics Classifier and Database for Heme-Copper Oxygen Reductases

    Get PDF
    Background: Heme-copper oxygen reductases (HCOs) are the last enzymatic complexes of most aerobic respiratory chains, reducing dioxygen to water and translocating up to four protons across the inner mitochondrial membrane (eukaryotes) or cytoplasmatic membrane (prokaryotes). The number of completely sequenced genomes is expanding exponentially, and concomitantly, the number and taxonomic distribution of HCO sequences. These enzymes were initially classified into three different types being this classification recently challenged. Methodology:We reanalyzed the classification scheme and developed a new bioinformatics classifier for the HCO and Nitric oxide reductases (NOR), which we benchmark against a manually derived gold standard sequence set. It is able to classify any given sequence of subunit I from HCO and NOR with a global recall and precision both of 99.8%. We use this tool to classify this protein family in 552 completely sequenced genomes. Conclusions: We concluded that the new and broader data set supports three functional and evolutionary groups of HCOs. Homology between NORs and HCOs is shown and NORs closest relationship with C Type HCOs demonstrated. We established and made available a classification web tool and an integrated Heme-Copper Oxygen reductase and NOR protein database (www.evocell.org/hco)

    Positive Darwinian Selection in the Piston That Powers Proton Pumps in Complex I of the Mitochondria of Pacific Salmon

    Get PDF
    The mechanism of oxidative phosphorylation is well understood, but evolution of the proteins involved is not. We combined phylogenetic, genomic, and structural biology analyses to examine the evolution of twelve mitochondrial encoded proteins of closely related, yet phenotypically diverse, Pacific salmon. Two separate analyses identified the same seven positively selected sites in ND5. A strong signal was also detected at three sites of ND2. An energetic coupling analysis revealed several structures in the ND5 protein that may have co-evolved with the selected sites. These data implicate Complex I, specifically the piston arm of ND5 where it connects the proton pumps, as important in the evolution of Pacific salmon. Lastly, the lineage to Chinook experienced rapid evolution at the piston arm

    A Dialogue between the Hypoxia-Inducible Factor and the Tumor Microenvironment

    Get PDF
    The hypoxia-inducible factor is the key protein responsible for the cellular adaptation to low oxygen tension. This transcription factor becomes activated as a result of a drop in the partial pressure of oxygen, to hypoxic levels below 5% oxygen, and targets a panel of genes involved in maintenance of oxygen homeostasis. Hypoxia is a common characteristic of the microenvironment of solid tumors and, through activation of the hypoxia-inducible factor, is at the center of the growth dynamics of tumor cells. Not only does the microenvironment impact on the hypoxia-inducible factor but this factor impacts on microenvironmental features, such as pH, nutrient availability, metabolism and the extracellular matrix. In this review we discuss the influence the tumor environment has on the hypoxia-inducible factor and outline the role of this factor as a modulator of the microenvironment and as a powerful actor in tumor remodeling. From a fundamental research point of view the hypoxia-inducible factor is at the center of a signaling pathway that must be deciphered to fully understand the dynamics of the tumor microenvironment. From a translational and pharmacological research point of view the hypoxia-inducible factor and its induced downstream gene products may provide information on patient prognosis and offer promising targets that open perspectives for novel β€œanti-microenvironment” directed therapies
    • …
    corecore