7 research outputs found

    Immunoregulatory effects triggered by immunobiotic Lactobacillus jensenii TL2937 strain involve efficient phagocytosis in porcine antigen presenting cells

    Get PDF
    Background: Immunobiotic Lactobacillus jensenii TL2937 modulates porcine mononuclear phagocytes from Peyer?s patches (PPMPs) and induces a differential production of pro- and anti-inflammatory cytokines in response to Toll-like receptor (TLR)-4 activation. Objective: In view of the important role played by phagocytosis in the activation of antigen presenting cells (APCs), the aim of the present work was to examine the interaction of TL2937 with porcine PPMPs focusing on phagocytosis. In addition, this study aimed to investigate whether the effects of L. jensenii TL2937 in porcine blood monocyte-derived dendritic cells (MoDCs) are similar to those found in PPMPs considering that MoDCs do not recapitulate all functions of mucosal APCs. Results: studies showed a high ability of porcine CD172a+ PPMPs to phagocytose L. jensenii TL2937. Interestingly, our results also revealed a reduced capacity of the non-immunomodulatory L. plantarum TL2766 to be phagocytosed by those immune cells. Phagocytosis of L. jensenii TL2937 by porcine PPMPs was partially dependent on TLR2. In addition, we demonstrated that TL2937 strain was able to improve the expression of IL-1, IL-12 and IL-10 in immature MoDCs resembling the effect of this immunobiotic bacterium on PPMPs. Moreover, similarly to PPMPs those immunomodulatory effects were related to the higher capacity of TL2937 to be phagocytosed by immature MoDCs. Conclusions: Microbial recognition in APCs could be effectively mediated through ligand-receptor interactions that then mediate phagocytosis and signaling. For the immunobiotic strain TL2937, TLR2 has a partial role for its interaction with porcine APCs and it is necessary to investigate the role of other receptors. A challenge for future research will be advance in the full understanding of the molecular interactions of immunobiotic L. jensenii TL2937 with porcine APCs that will be crucial for the successful development of functional feeds for the porcine host. This study is a step in that direction.Fil: Tsukida, Kohichiro. Tohoku University; JapónFil: Takahashi, Takuya. Tohoku University; JapónFil: Iida, Hikaru. Tohoku University; JapónFil: Kanmani, Paulraj. Tohoku University; JapónFil: Suda, Yoshihito. Miyagi University; JapónFil: Nochi, Tomonori. Tohoku University; JapónFil: Ohwada, Shuichi. Tohoku University; JapónFil: Aso, Hisashi. Tohoku University; JapónFil: Ohkawara, Sou. Meiji Seika Pharma Co., Ltd. Agricultural & Veterinary Division; JapónFil: Makino, Seiya. Meiji Co., Ltd. Division of Research and Development; JapónFil: Kano, Hiroshi. Meiji Co., Ltd. Division of Research and Development; JapónFil: Saito, Tadao. Tohoku University; JapónFil: Villena, Julio Cesar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Centro de Referencia para Lactobacilos; ArgentinaFil: Kitazawa, Haruki. Tohoku University; Japó

    Immunobiotic Lactobacillus jensenii as immune-health promoting factor to improve growth performance and productivity in post-weaning pigs

    Get PDF
    Background: Immunoregulatory probiotics (immunobiotics) have been proposed to improve piglets' immune system to avoid intestinal infections and reduce unproductive inflammation after weaning. Previously, it was demonstrated that Lactobacillus jensenii TL2937 (LjTL2937) attenuated the inflammatory response triggered by activation of Toll-like receptor 4 (TLR-4) in porcine intestinal epithelial (PIE) cells and antigen presenting cells (APCs) from porcine Peyer's patches (PP).Objective: In view of the critical importance of PIE-APCs interactions in the regulation of intestinal immune responses, we aimed to examine the effect of LjTL2937 on activation patterns of APCs from swine PPs in co-cultures with PIE cells. In addition, we investigated whether LjTL2937 was able to beneficially modulate intestinal immunity of piglets after weaning to improve immune-health status.Results: Stimulation of PIE-APCs co-cultures with LjTL2937 increased the expression of MHC-II, CD80/86, IL-10, and Bcl-3 in CD172a+CD11R1- and CD172a+CD11R1high APCs. In addition, the TL2937 strain caused the upregulation of three negative regulators of TLR4 in PIE cells: MKP-1, Bcl-3 and A20. These changes significantly reduced the inflammatory response triggered by TLR4 activation in PIE-APCs co-cultures. The in vivo experiments using castrated male piglets (crossbreeding (LWD) with Landrace (L), Large Yorkshire (W) and Duroc (D))of 3 weeks of age demonstrated that feeding with LjTL2937 significantly reduced blood complement activity and C reactive protein concentrations while no changes were observed in blood leukocytes, ratio of granulocytes to lymphocyte numbers, macrophages' activity and antibody levels. In addition, treatment with LjTL2937 significantly improved growth performance and productivity, and increased carcass quality.Conclusions: We demonstrated that the use of immunobiotics strains like LjTL2937, as supplemental additives for piglets feedings, could be used as a strategy to maintain and improve intestinal homeostasis; that is important for the development of the pig and for health and performance throughout the productive life of the animal.Fil: Suda, Yoshihito. Miyagi University. Department of Food, Agriculture and Environment; JapónFil: Villena, Julio Cesar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Centro de Referencia para Lactobacilos; ArgentinaFil: Takahashi, Yu. Miyagi University. Department of Food, Agriculture and Environment; JapónFil: Hosoya, Shoichi. Tohoku University. Graduate School of Agricultural Science. Laboratory of Animal Products Chemistry. Food and Feed Immunology Group; JapónFil: Tomosada, Yohsuke. Tohoku University. Graduate School of Agricultural Science. Laboratory of Animal Products Chemistry. Food and Feed Immunology Group; JapónFil: Tsukida, Kohichiro. Tohoku University. Graduate School of Agricultural Science. Laboratory of Animal Products Chemistry. Food and Feed Immunology Group; JapónFil: Shimazu, Tomoyuki. Tohoku University. Graduate School of Agricultural Science. Laboratory of Animal Breading and Genetics ; JapónFil: Aso, Hisashi. Tohoku University. Graduate School of Agricultural Science. Cell Biology Laboratory; JapónFil: Tohno, Masanori. National Institute of Livestock and Grassland Science; JapónFil: Ishida, Mitsuharu. Miyagi University. Department of Food, Agriculture and Environment; JapónFil: Makino, Seiya. No especifíca;Fil: Ikegami, Shuji. No especifíca;Fil: Kitazawa, Haruki. Tohoku University. Graduate School of Agricultural Science. Laboratory of Animal Products Chemistry. Food and Feed Immunology Group; Japó

    Immunobiotic Lactobacillus rhamnosus improves resistance of infant mice against respiratory syncytial virus infection

    Get PDF
    Previously we showed that orally administered Lactobacillus rhamnosus CRL1505 beneficially regulated the balance between pro- and anti-inflammatory mediators in the lungs of poly(I:C)-challenged mice, allowing an effective inflammatory response against the TLR3/RIG-I agonist but at the same time reducing tissue damage. The aim of the present study was to investigate whether oral administration of the CRL1505 strain was able to improve resistance against respiratory syncytial virus (RSV) infection in infant mice and to evaluate the immunological mechanisms involved in the immunobiotic effect. We demonstrated that treatment of 3-week old BALB/c mice with L. rhamnosus CRL1505 significantly reduce lung viral loads and tissue injuries after the challenge with RSV. Moreover, we showed that the protective effect achieved by the CRL1505 strain is related to its capacity to differentially modulate respiratory antiviral immune response. Our results shows that IFN-γ and IL-10 secreted in response to L. rhamnosus CRL1505 oral stimulation would modulate the pulmonary innate immune microenvironment conducting to the activation of CD103+ and CD11bhigh dendritic cells and the generation of CD3+CD4+IFN-γ+ Th1 cells with the consequent attenuation of the strong and damaging Th2 reactions associated with RSV challenge. Our results indicate that modulation of the common mucosal immune system by immunobiotics could favor protective immunity against respiratory viral pathogens with a high attack rate in early infancy, such as RSV.Fil: Eriko, Chiba. Tohoku University. Graduate School of Agricultural Science. Food and Feed Immunology Group; Japón;Fil: Tomosada, Yohsuke. Tohoku University. Graduate School of Agricultural Science. Food and Feed Immunology Group; Japón;Fil: Vizoso Pinto, María Guadalupe. Universidad Nacional de Tucuman. Facultad de Medicina. Departamento Biomedico. Laboratorio de Fisiologia y Farmacologia Vascular; Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico - CONICET - Tucumán. Instituto Superior de Investigaciones Biológicas; Argentina;Fil: Salva, Maria Susana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tucumán. Centro de Referencia para Lactobacilos (i); Argentina;Fil: Takahashi, Takuya. Tohoku University. Graduate School of Agricultural Science. Food and Feed Immunology Group; Japón;Fil: Tsukida, Kohichiro. Tohoku University. Graduate School of Agricultural Science. Food and Feed Immunology Group; Japón;Fil: Kitazawa, Haruki. Tohoku University. Graduate School of Agricultural Science. Food and Feed Immunology Group; Japón;Fil: Alvarez, Gladis Susana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tucumán. Centro de Referencia para Lactobacilos (i); Argentina; Universidad Nacional de Tucumán. Facultad de Bioquímica, Química y Farmacia. Instituto de Bioquímica Clínica Aplicada; Argentina;Fil: Villena, Julio Cesar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tucumán. Centro de Referencia para Lactobacilos (i); Argentina; Tohoku University. Graduate School of Agricultural Science. Food and Feed Immunology Group; Japón

    Immunobiotic lactobacilli reduce viral-associated pulmonary damage through the modulation of inflammation-coagulation interactions

    Get PDF
    The exacerbated disease due to immune- and coagulative-mediated pulmonary injury during acute respiratory viruses infection results in severe morbidity and mortality. Identifying novel approaches to modulate virus-induced inflammation-coagulation interactions could be important alternatives for treating acute respiratory viruses infections. In this study we investigated the effect of the probiotic strain Lactobacillus rhamnosus CRL1505 on lung TLR3-mediated inflammation, and its ability to modulate inflammation-coagulation interaction during respiratory viral infection. Our findings reveal for the first time that a probiotic bacterium is able to influence lung immune-coagulative reaction triggered by TLR3 activation, by modulating the production of proinflammatory and anti-inflammatory cytokines as well as expression of tissue factor and thrombomodulin in the lung. We also demonstrated that the preventive treatment with the probiotic bacteria beneficially modulates the fine tune balance between clearing respiratory viruses (respiratory syncytial virus and influenza virus) and controlling immune-coagulative responses in the lung, allowing normal lung function to be maintained in the face of a viral attack. Our data also pinpoint a crucial role for IL-10 in the immune protection induced by L. rhamnosus CRL1505 during respiratory viral infections. These observations might be helpful to propose new preventive or therapeutic approaches to better control virus-inflammatory lung damage using probiotic functional foods.Fil: Zelaya, María Hortensia del Rosario. Universidad Nacional de Tucuman. Facultad de Bioquímica, Química y Farmacia. Instituto de Bioquímica Clinica Aplicada. Cátedra de Bioquímica Clinica I; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Centro de Referencia para Lactobacilos; ArgentinaFil: Tsukida, Kohichiro. Graduate School Of Agricultural Science,tohoku Universi; JapónFil: Chiban, Alicia Mirtha. Graduate School Of Agricultural Science,tohoku Universi; JapónFil: Marranzino, Gabriela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Centro de Referencia para Lactobacilos; ArgentinaFil: Alvarez, Gladis Susana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Centro de Referencia para Lactobacilos; Argentina. Universidad Nacional de Tucuman. Facultad de Bioquímica, Química y Farmacia. Instituto de Bioquímica Clinica Aplicada. Cátedra de Bioquímica Clinica I; ArgentinaFil: Kitazawa, Haruki. Graduate School Of Agricultural Science,tohoku Universi; JapónFil: Agüero, Graciela. Universidad Nacional de Tucuman. Facultad de Bioquímica, Química y Farmacia. Instituto de Bioquímica Clinica Aplicada. Cátedra de Bioquímica Clinica I; ArgentinaFil: Villena, Julio Cesar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Centro de Referencia para Lactobacilos; Argentin
    corecore