77 research outputs found

    The impact of continuity correction methods in Cochrane reviews with single-zero trials with rare events: A meta-epidemiological study.

    Get PDF
    Meta-analyses examining dichotomous outcomes often include single-zero studies, where no events occur in intervention or control groups. These pose challenges, and several methods have been proposed to address them. A fixed continuity correction method has been shown to bias estimates, but it is frequently used because sometimes software (e.g., RevMan software in Cochrane reviews) uses it as a default. We aimed to empirically compare results using the continuity correction with those using alternative models that do not require correction. To this aim, we reanalyzed the original data from 885 meta-analyses in Cochrane reviews using the following methods: (i) Mantel-Haenszel model with a fixed continuity correction, (ii) random effects inverse variance model with a fixed continuity correction, (iii) Peto method (the three models available in RevMan), (iv) random effects inverse variance model with the treatment arm continuity correction, (v) Mantel-Haenszel model without correction, (vi) logistic regression, and (vii) a Bayesian random effects model with binominal likelihood. For each meta-analysis we calculated ratios of odds ratios between all methods, to assess how the choice of method may impact results. Ratios of odds ratios <0.8 or <1.25 were seen in ~30% of the existing meta-analyses when comparing results between Mantel-Haenszel model with a fixed continuity correction and either Mantel-Haenszel model without correction or logistic regression. We concluded that injudicious use of the fixed continuity correction in existing Cochrane reviews may have substantially influenced effect estimates in some cases. Future updates of RevMan should incorporate less biased statistical methods

    Macroscopically uniform and flat lithium thin film formed by electrodeposition using multicomponent additives

    Get PDF
    It is well-known that the electrodeposition of lithium usually results in the formation of dendrites on the electrode surface. This limits the utilization of metallic lithium as a material for, for example, the negative electrodes of rechargeable batteries. In aqueous solutions, similar dendritic growth of metals is often observed during electrodeposition; however, utilization of multicomponent additives has overcome this shortcoming. Here, we report that the simultaneous utilization of four different additives greatly suppresses the formation of lithium dendrites during electrodeposition in a tetraglyme-based solution. The roles of the additives are discussed, based on the results of electrochemical quartz crystal microbalance measurements and X-ray photoelectron spectroscopy

    The usefulness of re-attachability of anti-adhesive cross-linked gelatin film and the required physical and biological properties.

    Get PDF
    Background:To overcome the unfavorable issues associated with conventional anti-adhesive HA/CMC film, we developed an anti-adhesive thermally cross-linked gelatin film.Objective:We tried to clarify the re-attachability of the film and the required properties concerning the film thickness, stiffness and anti-adhesion effect.Methods:To determine the optimal thickness, 5 kinds of the thickness of gelatin film and the conventional film were analyzed by the tensile test, shearing test, buckling test and tissue injury test. Finally, using the optimal film thickness, we tried to clarify the anti-adhesion effect of the reattached film.Results:The tensile and shearing test showed gelatin films ≥30 μm thick had greater tensile strength and a smaller number of film fractures, than the conventional film. The buckling and tissue injury test showed gelatin films ≥60 μm thick had higher buckling strength and worse injury scores than the conventional film. The anti-adhesive effect of re-attached gelatin film using optimal thickness (30-40 μm) found the anti-adhesion score was significantly better than that of the control.Conclusions:Provided it has an optimal thickness, gelatin film can be reattached with enough physical strength not to tear, safety stiffness not to induce tissue injury, and a sufficient anti-adhesion effect

    The ASTRO-H X-ray Observatory

    Full text link
    The joint JAXA/NASA ASTRO-H mission is the sixth in a series of highly successful X-ray missions initiated by the Institute of Space and Astronautical Science (ISAS). ASTRO-H will investigate the physics of the high-energy universe via a suite of four instruments, covering a very wide energy range, from 0.3 keV to 600 keV. These instruments include a high-resolution, high-throughput spectrometer sensitive over 0.3-2 keV with high spectral resolution of Delta E < 7 eV, enabled by a micro-calorimeter array located in the focal plane of thin-foil X-ray optics; hard X-ray imaging spectrometers covering 5-80 keV, located in the focal plane of multilayer-coated, focusing hard X-ray mirrors; a wide-field imaging spectrometer sensitive over 0.4-12 keV, with an X-ray CCD camera in the focal plane of a soft X-ray telescope; and a non-focusing Compton-camera type soft gamma-ray detector, sensitive in the 40-600 keV band. The simultaneous broad bandpass, coupled with high spectral resolution, will enable the pursuit of a wide variety of important science themes.Comment: 22 pages, 17 figures, Proceedings of the SPIE Astronomical Instrumentation "Space Telescopes and Instrumentation 2012: Ultraviolet to Gamma Ray

    The Quiescent Intracluster Medium in the Core of the Perseus Cluster

    Get PDF
    Clusters of galaxies are the most massive gravitationally-bound objects in the Universe and are still forming. They are thus important probes of cosmological parameters and a host of astrophysical processes. Knowledge of the dynamics of the pervasive hot gas, which dominates in mass over stars in a cluster, is a crucial missing ingredient. It can enable new insights into mechanical energy injection by the central supermassive black hole and the use of hydrostatic equilibrium for the determination of cluster masses. X-rays from the core of the Perseus cluster are emitted by the 50 million K diffuse hot plasma filling its gravitational potential well. The Active Galactic Nucleus of the central galaxy NGC1275 is pumping jetted energy into the surrounding intracluster medium, creating buoyant bubbles filled with relativistic plasma. These likely induce motions in the intracluster medium and heat the inner gas preventing runaway radiative cooling; a process known as Active Galactic Nucleus Feedback. Here we report on Hitomi X-ray observations of the Perseus cluster core, which reveal a remarkably quiescent atmosphere where the gas has a line-of-sight velocity dispersion of 164+/-10 km/s in a region 30-60 kpc from the central nucleus. A gradient in the line-of-sight velocity of 150+/-70 km/s is found across the 60 kpc image of the cluster core. Turbulent pressure support in the gas is 4% or less of the thermodynamic pressure, with large scale shear at most doubling that estimate. We infer that total cluster masses determined from hydrostatic equilibrium in the central regions need little correction for turbulent pressure.Comment: 31 pages, 11 Figs, published in Nature July

    Effects of Fiber Diameter and Spacing Size of an Artificial Scaffold on the In Vivo Cellular Response and Tissue Remodeling.

    Get PDF
    By mimicking the extracellular matrix, nonwoven fabrics can function as scaffolds for tissue engineering application ideally, and they have been characterized regarding their fiber diameter and fiber spacing (spacing size) in vitro. We chronologically examined the in vivo effects of these fabrics on the cellular response and tissue remodeling. Four types of nonwoven polyglycolic acid fabrics (Fabric-0.7, Fabric-0.9, Fabric-3, and Fabric-16 with fiber diameters of 0.7, 0.9, 3.0, and 16.2 μm and spacing sizes of 2.0, 19.3, 19.0, and 825.4 μm, respectively) were implanted into the rat dorsum and subjected to histologic and immunohistochemical analyses from day 3 to 70. With Fabric-0.7, inflammatory cells (mainly M1 macrophages) and myofibroblasts with collagen type III accumulated mainly on the surface of the fabric and did not infiltrate inside the fabric initially, likely due to the narrow fiber space. Massive formation of collagen type I then appeared with the degradation of the fabrics, and finally, the remodeled tissue turned into a dense scar. With Fabric-0.9 and Fabric-3, inflammatory cells (predominantly M2 macrophages) were seen in all layers of the fabric initially. A mild increase in collagen type I was then seen, with few myofibroblasts, and the remodeled tissue ultimately showed a relatively little scar with an adequate thickness of the tissue induced by the fabrics. With Fabric-16, inflammatory cells (predominantly M1 macrophages) infiltrated into all layers of the fabric initially along with many myofibroblasts, especially in the hole. Lately, massive formation of collagen type I was noted due to the slow degradation of the fabric, with the shrinking of the fabric substantially, and the remodeled tissue finally turned to a dense scar. These findings suggest that optimizing the spacing size as well as the fiber diameter of artificial scaffolds may control the cellular response and tissue remodeling and facilitate favorable tissue regeneration without scar formation

    Hitomi (ASTRO-H) X-ray Astronomy Satellite

    Get PDF
    The Hitomi (ASTRO-H) mission is the sixth Japanese x-ray astronomy satellite developed by a large international collaboration, including Japan, USA, Canada, and Europe. The mission aimed to provide the highest energy resolution ever achieved at E  >  2  keV, using a microcalorimeter instrument, and to cover a wide energy range spanning four decades in energy from soft x-rays to gamma rays. After a successful launch on February 17, 2016, the spacecraft lost its function on March 26, 2016, but the commissioning phase for about a month provided valuable information on the onboard instruments and the spacecraft system, including astrophysical results obtained from first light observations. The paper describes the Hitomi (ASTRO-H) mission, its capabilities, the initial operation, and the instruments/spacecraft performances confirmed during the commissioning operations for about a month
    corecore