14 research outputs found

    Persistent expression of autoantibodies in SLE patients in remission

    Get PDF
    A majority of the antibodies expressed by nascent B cells in healthy humans are self-reactive, but most of these antibodies are removed from the repertoire during B cell development. In contrast, untreated systemic lupus erythematosus (SLE) patients fail to remove many of the self-reactive and polyreactive antibodies from the naive repertoire. Here, we report that SLE patients in clinical remission continue to produce elevated numbers of self-reactive and polyreactive antibodies in the mature naive B cell compartment, but the number of B cells expressing these antibodies is lower than in patients with active disease. Our finding that abnormal levels of self-reactive mature naive B cells persist in the majority of patients in clinical remission suggests that early checkpoint abnormalities are an integral feature of SLE

    A checkpoint for autoreactivity in human IgM+ memory B cell development

    Get PDF
    Autoantibodies are removed from the repertoire at two checkpoints during B cell development in the bone marrow and the periphery. Despite these checkpoints, up to 20% of the antibodies expressed by mature naive B cells in healthy humans show low levels of self-reactivity. To determine whether self-reactive antibodies are also part of the antigen-experienced memory B cell compartment, we analyzed recombinant antibodies cloned from single circulating human IgM+ memory B cells. Cells expressing antibodies specific for individual bacterial polysaccharides were expanded in the IgM+ memory compartment. In contrast, B cells expressing self-reactive and broadly bacterially reactive antibodies were removed from the repertoire in the transition from naive to IgM+ memory B cell. Selection against self-reactive antibodies was implemented before the onset of somatic hypermutation. We conclude that a third checkpoint selects against self-reactivity during IgM+ memory B cell development in humans

    Defective B cell tolerance checkpoints in systemic lupus erythematosus

    Get PDF
    A cardinal feature of systemic lupus erythematosus (SLE) is the development of autoantibodies. The first autoantibodies described in patients with SLE were those specific for nuclei and DNA, but subsequent work has shown that individuals with this disease produce a panoply of different autoantibodies. Thus, one of the constant features of SLE is a profound breakdown in tolerance in the antibody system. The appearance of self-reactive antibodies in SLE precedes clinical disease, but where in the B cell pathway tolerance is first broken has not been defined. In healthy humans, autoantibodies are removed from the B cell repertoire in two discrete early checkpoints in B cell development. We found these checkpoints to be defective in three adolescent patients with SLE. 25–50% of the mature naive B cells in SLE patients produce self-reactive antibodies even before they participate in immune responses as compared with 5–20% in controls. We conclude that SLE is associated with abnormal early B cell tolerance

    Autoreactivity in human IgG+ memory B cells

    Get PDF
    More than half of the nascent B cells in humans initially express autoreactive antibodies. However, most of these autoantibodies are removed from the repertoire at two checkpoints before maturation into naïve B cells. A third checkpoint excludes remaining autoantibodies from the antigenexperienced IgM+ memory B cell pool. Nevertheless, low-affinity self-reactive antibodies are frequently found in the serum of normal humans. To determine the source of these antibodies we cloned and expressed antibodies from circulating human IgG+ memory B cells. Surprisingly, we found that self-reactive antibodies including anti-nuclear antibodies were frequently expressed by IgG+ memory B cells in healthy donors. Most of these antibodies were created de-novo by somatic hypermutation during the transition between mature naïve and IgG+ memory B cells

    Coronin-1 is phosphorylated at Thr-412 by protein kinase Cα in human phagocytic cells

    No full text
    Coronin-1, a hematopoietic cell-specific actin-binding protein, is thought to be involved in the phagocytic process through its interaction with actin filaments. The dissociation of coronin-1 from phagosomes after its transient accumulation on the phagosome surface is associated with lysosomal fusion. We previously reported that 1) coronin-1 is phosphorylated by protein kinase C (PKC), 2) coronin-1 has two phosphorylation sites, Ser-2 and Thr-412, and 3) Thr-412 of coronin-1 is phosphorylated during phagocytosis. In this study, we examined which PKC isoform is responsible for the phosphorylation of coronin-1 at Thr-412 by using isotype-specific PKC inhibitors and small interfering RNAs (siRNAs). Thr-412 phosphorylation of coronin-1 was suppressed by Gö6976, an inhibitor of PKCα and PKCβI. This phosphorylation was attenuated by siRNA for PKCα, but not by siRNA for PKCβ. Furthermore, Thr-412 of coronin-1 was phosphorylated by recombinant PKCα in vitro, but not by recombinant PKCβ. We next examined the effects of Gö6976 on the intracellular distribution of coronin-1 in HL60 cells during phagocytosis. The confocal fluorescence microscopic observation showed that coronin-1 was not dissociated from phagosomes in Gö6976-treated cells. These results indicate that phosphorylation of coronin-1 at Thr-412 by PKCα regulates intracellular distribution during phagocytosis

    Stimulation of Peritoneal Mesothelial Cells to Secrete Matrix Metalloproteinase-9 (MMP-9) by TNF-α: A Role in the Invasion of Gastric Carcinoma Cells

    No full text
    It has recently been recognized that inflammatory cytokines, such as tumor necrosis factor-α (TNF-α), upregulate the secretion of matrix metalloproteinase-9 (MMP-9) from cancer cells and thereby promote peritoneal dissemination. In this study, we found that TNF-α also stimulated peritoneal mesothelial cells to secrete MMP-9 as assessed by zymography. MMP-9 gene expression in mesothelial cells induced by TNF-α was confirmed by quantitative RT-PCR analysis. We then utilized the reconstituted artificial mesothelium, which was composed of a monolayer of mesothelial cells cultured on a Matrigel layer in a Boyden chamber system, to examine the effects of TNF-α on carcinoma cell invasion. The transmigration of MKN1 human gastric carcinoma cells through the reconstituted mesothelium was promoted by TNF-α in a dose-dependent manner. The increased MKN1 cell migration was partially inhibited by the anti-α3 integrin antibody, indicating that the invasion process involves an integrin-dependent mechanism. Finally, we observed that the invasion of MMP-9-knockdown MKN1 cells into Matrigel membranes was potentiated by the exogenous addition of purified proMMP-9. These results suggest that TNF-α-induced MMP-9 secretion from mesothelial cells plays an important role in the metastatic dissemination of gastric cancer
    corecore