263 research outputs found

    Thruster configurations for maneuvering heavy payloads

    Get PDF
    The cargo transfer vehicle (CTV) will be required to perform six degree of freedom (6DOF) maneuvers while carrying a wide range of payloads varying from 100,000 lbm to no payload. The current baseline design configuration for the CTV uses a forward propulsion module (FPM) mounted in front of the payload and the CTV behind the payload so that the center of gravity (CG) of the combined stack is contained between the thruster sets. This allows for efficient rotation and translations of heavy payloads in all directions; however, the FPM is a costly item, so it is desirable to find design solutions which do not require the FPM. This presentation provides an overview of the work performed in analyzing the FPM requirements for the CTV. Specifically, key issues related to thruster configuration requirements for operating the CTV without the FPM, throughout the 100,000 lbm payload to no payload range, will be highlighted. In this study, only the reaction control system (RCS) thruster configurations are considered and the orbit adjust engines are not addressed. An important output of this study is the viable alternative thruster configurations which eliminate the need for the FPM. Initial results were derived using analytical techniques and simulation analysis tools. Results from the preliminary analysis were used as inputs for our 6DOF simulation. The 6DOF simulation was used to validate our design guidelines and to verify the performance of the thruster configurations

    Hydrogen-Poor Disks in Compact X-Ray Binaries

    Full text link
    We show that accretion disks in several compact X-ray binaries with hydrogen-depleted donors are likely subject to a thermal ionization instability, unless they are strongly irradiated. These disks are particularly interesting in that their MHD-turbulent properties in the neutral phase may be quite different from those of standard, hydrogen-rich disks.Comment: 10 pages, accepted for publication in ApJ

    Climatology of Mid-latitude Ionospheric Disturbances from the Very Large Array Low-frequency Sky Survey

    Full text link
    The results of a climatological study of ionospheric disturbances derived from observations of cosmic sources from the Very Large Array (VLA) Low-frequency Sky Survey (VLSS) are presented. We have used the ionospheric corrections applied to the 74 MHz interferometric data within the VLSS imaging process to obtain fluctuation spectra for the total electron content (TEC) gradient on spatial scales from a few to hundreds of kilometers and temporal scales from less than one minute to nearly an hour. The observations sample nearly all times of day and all seasons. They also span latitudes and longitudes from 28 deg. N to 40 deg. N and 95 deg. W to 114 deg. W, respectively. We have binned and averaged the fluctuation spectra according to time of day, season, and geomagnetic (Kp index) and solar (F10.7) activity. These spectra provide a detailed, multi-scale account of seasonal and intraday variations in ionospheric activity with wavelike structures detected at wavelengths between about 35 and 250 km. In some cases, trends between spectral power and Kp index and/or F10.7 are also apparent. In addition, the VLSS observations allow for measurements of the turbulent power spectrum down to periods of 40 seconds (scales of ~0.4 km at the height of the E-region). While the level of turbulent activity does not appear to have a strong dependence on either Kp index or F10.7, it does appear to be more pronounced during the winter daytime, summer nighttime, and near dusk during the spring.Comment: accepted for publication in Radio Scienc

    Stability and Evolution of Supernova Fallback Disks

    Get PDF
    We show that thin accretion disks made of Carbon or Oxygen are subject to the same thermal ionization instability as Hydrogen and Helium disks. We argue that the instability applies to disks of any metal content. The relevance of the instability to supernova fallback disks probably means that their power-law evolution breaks down when they first become neutral. We construct simple analytical models for the viscous evolution of fallback disks to show that it is possible for these disks to become neutral when they are still young (ages of a few 10^3 to 10^4 years), compact in size (a few 10^9 cm to 10^11 cm) and generally accreting at sub-Eddington rates (Mdot ~ a few 10^14 - 10^18 g/s). Based on recent results on the nature of viscosity in the disks of close binaries, we argue that this time may also correspond to the end of the disk activity period. Indeed, in the absence of a significant source of viscosity in the neutral phase, the entire disk will likely turn to dust and become passive. We discuss various applications of the evolutionary model, including anomalous X-ray pulsars and young radio pulsars. Our analysis indicates that metal-rich fallback disks around newly-born neutron stars and black holes become neutral generally inside the tidal truncation radius (Roche limit) for planets, at \~10^11 cm. Consequently, the efficiency of the planetary formation process in this context will mostly depend on the ability of the resulting disk of rocks to spread via collisions beyond the Roche limit. It appears easier for the merger product of a doubly degenerate binary, whether it is a massive white dwarf or a neutron star, to harbor planets because it can spread beyond the Roche limit before becoming neutral.[Abridged]Comment: 34 pages, 2 figures, accepted for publication in Ap

    Rapid and Convenient Single-Chain Variable Fragment-Employed Electrochemical C-Reactive Protein Detection System

    Get PDF
    Although IgG-free immunosensors are in high demand owing to ethical concerns, the development of convenient immunosensors that alternatively integrate recombinantly produced antibody fragments, such as single-chain variable fragments (scFvs), remains challenging. The low affinity of antibody fragments, unlike IgG, caused by monovalent binding to targets often leads to decreased sensitivity. We improved the affinity owing to the bivalent effect by fabricating a bivalent antibody–enzyme complex (AEC) composed of two scFvs and a single glucose dehydrogenase, and developed a rapid and convenient scFv-employed electrochemical detection system for the C-reactive protein (CRP), which is a homopentameric protein biomarker of systemic inflammation. The development of a point-of-care testing (POCT) system is highly desirable; however, no scFv-based CRP-POCT immunosensors have been developed. As expected, the bivalent AEC showed higher affinity than the single scFv and contributed to the high sensitivity of CRP detection. The electrochemical CRP detection using scFv-immobilized magnetic beads and the bivalent AEC as capture and detection antibodies, respectively, was achieved in 20 min without washing steps in human serum and the linear range was 1–10 nM with the limit of detection of 2.9 nM, which has potential to meet the criteria required for POCT application in rapidity, convenience, and hand-held detection devices without employing IgGs

    The Helium-Rich Cataclysmic Variable ES Ceti

    Full text link
    We report photometry of the helium-rich cataclysmic variable ES Ceti during 2001-2004. The star is roughly stable at V ~ 17.0 and has a light curve dominated by a single period of 620 s, which remains measurably constant over the 3 year baseline. The weight of evidence suggests that this is the true orbital period of the underlying binary, not a "superhump" as initially assumed. We report GALEX ultraviolet magnitudes, which establish a very blue flux distribution (F_nu ~ nu^1.3), and therefore a large bolometric correction. Other evidence (the very strong He II 4686 emission, and a ROSAT detection in soft X-rays) also indicates a strong EUV source, and comparison to helium-atmosphere models suggests a temperature of 130+-10 kK. For a distance of 350 pc, we estimate a luminosity of (0.8-1.7)x10^34 erg/s, yielding a mass accretion rate of (2-4)x10^-9 M_sol/yr onto an assumed 0.7 M_sol white dwarf. This appears to be about as expected for white dwarfs orbiting each other in a 10 minute binary, assuming that mass transfer is powered by gravitational radiation losses. We estimate mean accretion rates for other helium-rich cataclysmic variables, and find that they also follow the expected M-dot ~ P_o^-5 relation. There is some evidence (the lack of superhumps, and the small apparent size of the luminous region) that the mass transfer stream in ES Cet directly strikes the white dwarf, rather than circularizing to form an accretion disk.Comment: PDF, 26 pages, 3 tables, 9 figures; accepted, in press, to appear February 2005, PASP; more info at http://cba.phys.columbia.edu

    Arbitrarily Degenerate Helium White Dwarfs as Donors in AM CVn Binaries

    Get PDF
    We apply the Deloye & Bildsten (2003) isentropic models for donors in ultracompact low-mass X-ray binaries to the AM CVn population of ultracompact, interacting binaries. The mass-radius relations of these systems' donors in the mass range of interest (M_2<0.1 \msun) are not single-valued, but parameterized by the donor's specific entropy. This produces a range in the relationships between system observables, such as orbital period, \Porb, and mass transfer rate, \Mdot. For a reasonable range in donor specific entropy, \Mdot can range over several orders of magnitude at fixed \Porb. We determine the unique relation between \Mdot and M2M_2 in the AM CVn systems with known donor to accretor mass ratios, q=M2/M1q=M_2/M_1. We use structural arguments, as well as each system's photometric behavior, to place limits on \Mdot and M2M_2 in each. Most systems allow a factor of about 3 variation in \Mdot, although V803 Cen, if the current estimates of its qq are accurate, is an exception and must have M_2 \approx 0.02 \msun and \Mdot \approx 10^{-10} \msun yr−1^{-1}. Our donor models also constrain each donor's core temperature, TcT_c, range and correlate TcT_c with M2M_2. We examine how variations in donor specific entropy across the white dwarf family \citep{nele01a} of AM CVn systems affects this population's current galactic distribution. Allowing for donors that are not fully degenerate produces a shift in systems towards longer \Porb and higher \Mdot increasing the parameter space in which these systems can be found. This shift increases the fraction of systems whose \Porb is long enough that their gravity wave (GW) signal is obscured by the background of detached double white dwarf binaries that dominate the GW spectrum below a frequency ≈2\approx 2 mHz.Comment: 13 pages, 10 figures, uses emulateapj.cls. Accepted to Astrophysical Journa
    • …
    corecore