52 research outputs found

    Study of laser frequency stability from the observed vertical wind velocity by the Na lidar at Troms*

    Get PDF
    The Tenth Symposium on Polar Science/Ordinary sessions: [OS] Space and upper atmospheric sciences, Wed. 4 Dec. /Entrance Hall (1st floor) at National Institute of Polar Research (NIPR

    An automated auroral detection system using deep learning: real-time operation in Tromsø, Norway

    Get PDF
    The activity of citizen scientists who capture images of aurora borealis using digital cameras has recently been contributing to research regarding space physics by professional scientists. Auroral images captured using digital cameras not only fascinate us, but may also provide information about the energy of precipitating auroral electrons from space; this ability makes the use of digital cameras more meaningful. To support the application of digital cameras, we have developed artificial intelligence that monitors the auroral appearance in Tromsø, Norway, instead of relying on the human eye, and implemented a web application, “Tromsø AI”, which notifies the scientists of the appearance of auroras in real-time. This “AI” has a double meaning: artificial intelligence and eyes (instead of human eyes). Utilizing the Tromsø AI, we also classified large-scale optical data to derive annual, monthly, and UT variations of the auroral occurrence rate for the first time. The derived occurrence characteristics are fairly consistent with the results obtained using the naked eye, and the evaluation using the validation data also showed a high F1 score of over 93%, indicating that the classifier has a performance comparable to that of the human eye classifying observed images

    Spectra of pulsating aurora emissions observed by an optical spectrograph at Tromso, Norway

    Get PDF
    The Tenth Symposium on Polar Science/Ordinary sessions: [OS] Space and upper atmospheric sciences, Wed. 4 Dec. /Entrance Hall (1st floor) at National Institute of Polar Research (NIPR

    Field-Aligned Current Loop Model on Formation of Sporadic Metal Layers

    Get PDF
    第3回極域科学シンポジウム 横断セッション「中層大気・熱圏」 11月26日(月) 国立極地研究所 2階大会議

    Aurora and Airglow Observations with an All-Sky Imager on Shirase to Fill the Observation Gap over the Southern Ocean

    Get PDF
    The Tenth Symposium on Polar Science/Special session: [S] Future plan of Antarctic research: Towards phase X of the Japanese Antarctic Research Project (2022-2028) and beyond, Tue. 3 Dec. / Entrance Hall (1st floor) at National Institute of Polar Research (NIPR

    Study on variation of neutral temperature in the polar MLT region using a sodium LIDAR at Tromsø

    Get PDF
    第2回極域科学シンポジウム/第35回極域宙空圏シンポジウム 11月14日(月) 国立極地研究所 2階大会議

    A statistical study of convective and dynamic instabilities in the polar upper mesosphere above Tromsø

    Get PDF
    We have studied the convective (or static) and dynamic instabilities between 80 and 100 km above Tromsø (69.6° N, 19.2° E) using temperature and wind data of 6 min and 1 km resolutions primarily almost over a solar cycle obtained with the sodium lidar at Tromsø. First, we have calculated Brunt–Väisälä frequency (N) for 339 nights obtained from October 2010 to December 2019, and the Richardson number (Ri) for 210 nights obtained between October 2012 to December 2019. Second, using those values (N and Ri), we have calculated probabilities of the convective instability (N2<0) and the dynamic instability (0≤Ri<0.25) that can be used for proxies for evaluating the atmospheric stability. The probability of the convective instability varies from about 1% to 24% with a mean value of 9%, and that of the dynamic instability varies from 4 to 20% with a mean value of 10%. Third, we have compared these probabilities with the F10.7 index and local K-index. The probability of the convective instability shows a dependence (its correlation coefcient of 0.45) of the geomagnetic activity (local K-index) between 94 and 100 km, suggesting an auroral infuence on the atmospheric stability. The probability of the dynamic instability shows a solar cycle dependence (its correlation coefcient being 0.54). The probability of the dynamic instability shows the dependence of the 12 h wave amplitude (meridional and zonal wind components) (C.C.=0.52). The averaged potential energy of gravity waves shows decrease with height between 81 and 89 km, suggesting that dissipation of gravity waves plays an important role (at least partly) in causing the convective instability below 89 km. The probability of the convective instability at Tromsø appears to be higher than that at middle/low latitudes, while the probability of the dynamic instability is similar to that at middle/low latitudes

    オウシュウ ヒカンショウ サンラン (EISCAT) レーダー カンソクジョ ノ タハチョウ フォトメータデータ ヲ モチイタ ソウジョウ デンリケン デンドウド ノ スイテイ

    Get PDF
    本研究では,多波長フォトメータデータ(427.8 nm, 557.7 nm, 630.0 nm)を利用してオーロラ発生時の高緯度電離圏における電気伝導度推定の手法開発を行った.本手法の特徴は層状の電気伝導度を導出することが可能な点である.この層構造を持つ電気伝導度を光学データから導出するためのモデル関数を,高度分解能がある欧州非干渉散乱(EISCAT)UHF レーダーデータから推定した電気伝導度を用いて決定した.本研究により,電離圏を3 層(高度95-110 km, 110-170 km, 170-300 km)に分割しても,従来の方法と同程度の信頼度を持つ電気伝導度を光学データから導出できることが確認された.This study aimed to develop a methodology for estimating ionospheric conductance at auroral latitudes using data from a multi-wavelength photometer (427.8, 557.7, and 630.0 nm). An advantage of the approach is that the ionosphere is divided into layers and conductance is computed for each layer. From optical data, the layer conductance was determined by using height-resolved conductivity derived from the European Incoherent Scatter (EISCAT) Tromso UHF radar. The developed method can provide conductance from optical data with some confidence (at least at the same level as previous methods) even after separating the ionosphere into three layers, 95-110 km, 110-170 km, and 170-300 km

    Plasma-neutral gas interactions in various space environments: Assessment beyond simplified approximations as a Voyage 2050 theme

    Get PDF
    In the White Paper, submitted in response to the European Space Agency (ESA) Voyage 2050 Call, we present the importance of advancing our knowledge of plasma-neutral gas interactions, and of deepening our understanding of the partially ionized environments that are ubiquitous in the upper atmospheres of planets and moons, and elsewhere in space. In future space missions, the above task requires addressing the following fundamental questions: (A) How and by how much do plasma-neutral gas interactions influence the re-distribution of externally provided energy to the composing species? (B) How and by how much do plasma-neutral gas interactions contribute toward the growth of heavy complex molecules and biomolecules? Answering these questions is an absolute prerequisite for addressing the long-standing questions of atmospheric escape, the origin of biomolecules, and their role in the evolution of planets, moons, or comets, under the influence of energy sources in the form of electromagnetic and corpuscular radiation, because low-energy ion-neutral cross-sections in space cannot be reproduced quantitatively in laboratories for conditions of satisfying, particularly, (1) low-temperatures, (2) tenuous or strong gradients or layered media, and (3) in low-gravity plasma. Measurements with a minimum core instrument package (< 15 kg) can be used to perform such investigations in many different conditions and should be included in all deep-space missions. These investigations, if specific ranges of background parameters are considered, can also be pursued for Earth, Mars, and Venus
    corecore