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An automated auroral detection 
system using deep learning: 
real‑time operation in Tromsø, 
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The activity of citizen scientists who capture images of aurora borealis using digital cameras has 
recently been contributing to research regarding space physics by professional scientists. Auroral 
images captured using digital cameras not only fascinate us, but may also provide information 
about the energy of precipitating auroral electrons from space; this ability makes the use of digital 
cameras more meaningful. To support the application of digital cameras, we have developed artificial 
intelligence that monitors the auroral appearance in Tromsø, Norway, instead of relying on the human 
eye, and implemented a web application, “Tromsø AI”, which notifies the scientists of the appearance 
of auroras in real‑time. This “AI” has a double meaning: artificial intelligence and eyes (instead of 
human eyes). Utilizing the Tromsø AI, we also classified large‑scale optical data to derive annual, 
monthly, and UT variations of the auroral occurrence rate for the first time. The derived occurrence 
characteristics are fairly consistent with the results obtained using the naked eye, and the evaluation 
using the validation data also showed a high F1 score of over 93%, indicating that the classifier has a 
performance comparable to that of the human eye classifying observed images.

The contribution of citizen scientists has recently been highlighted in the field of the space science. Strong 
Thermal Emission Velocity Enhancement (STEVE) is an optical emission in the upper atmosphere of the polar 
region, which was newly discovered by citizen scientists using digital  cameras1,2. The apparent shape of STEVE 
looks like aurorae, more often appearing in the same altitudes due to the precipitations of electrons from the 
near-Earth space. However, the observations made using digital cameras by citizen scientists and other related 
professional observations demonstrated that the spectral characteristics of STEVE are completely different from 
those of typical greenish aurorae and that it should thus, be recognized as a new atmospheric phenomenon 
produced via the heating of the atmosphere by a fast plasma flow (i.e., not caused by the precipitation of auro-
ral electrons). In another example, citizen scientists have observed unusual wavy aurorae called “dunes” from 
several locations in the polar region simultaneously. Such multi-point observations have enabled the accurate 
estimation of the emission altitude of ∼100  km3. This suggests that dunes are mainly modulated by atmospheric 
gravity waves. Digital cameras not only help ascertain the shape and geographic location of atmospheric optical 
phenomena but also their color. Although the color is not a physical quantity, it was recently indicated that the 
colors of pulsating auroras, which is one of the major categories of the diffuse-type  auroras4 could be qualitatively 
related to the energy of  electrons5. Thus, observations made using digital cameras will play a meaningful role in 
gaining a more detailed understanding of the cause and nature of aurorae and related atmospheric phenomena. 
However, since the auroral hunters have to wait for the appearance of auroras in the field outside under the cold 
weather, it is still not easy for them to participate in research space science by taking photographs. In order to 
reduce such a heavy workload, professional researchers are required to provide information on how the occur-
rence of auroras depends on the background conditions (e.g., year, month, and local time) and further launch a 
notification service of the auroral activity in real-time.

The occurrence of auroras has been studied with the naked eye since the 18th century. The annual and sea-
sonal variations in the occurrence of auroral displays were investigated using 1000-time naked-eye observations 
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at two sites in southern Finland over a 100-year period from  17486. According to this study, the auroral occur-
rence has an 11-year cycle, similar to the solar activity, and a few auroras were observed during the Dalton Mini-
mum, which is one of the periods of the lowest solar  activity7. They also suggested that similar to the geomagnetic 
storms, the occurrence rate of auroras is higher in autumn/spring, and lower in summer/winter. However, since 
they observed the aurora without any optical instruments, the statistical significance of their results is relatively 
low. Another study has visually classified images observed by all-sky cameras (ASCs) to derive the occurrence 
rate of  auroras8. They captured images for 100,000 h using ASCs in Finland and Svalbard over a 24-year period 
from 1973 and derived the local time dependence of the auroral occurrence rate. Similar studies using ASCs in 
other high-latitude regions were conducted later, and a common tendency that was observed was that the auroral 
occurrence peaked just before/after the magnetic  midnight9–11. However, classifying data with the naked eye is 
physically tough and time-consuming, and it is difficult to apply such an approach to analyze recent data, which 
have a much higher temporal resolution.

To classify the current large-volume optical data, it is more efficient to use an automated classification per-
formed via artificial intelligence (AI), rather than using the human eye. Automated classification techniques 
for auroral images using hidden Marcov  models12, k-nearest neighbor (kNN)13,14 and support vector machines 
(SVMs)15 had been developed in the last decade. To further improve an accuracy, classification methods com-
bining multiple algorithms were proposed and applied to the dayside  auroras16–18. However, these algorithms 
have been difficult to be used casually because their accuracy depends on manually selected feature values. This 
drawback was overcome by the advent of the deep-learning technique, which automatically selects such values. 
A method for classifying daytime auroras using the deep neural network (DNN) was then  proposed19, but this 
method was not used for conducting a statistical analysis of the auroral occurrence because it cannot classify 
non-auroral images. Later, a study that classified gray-scale all-sky images including non-auroral images using 
 DNN20 performed the classification with 82% accuracy; the images were classified into six classes: Arc, Discrete, 
Diffuse, Cloudy, Moon, and Clear. The authors of this study also suggested using other classes such as auroral 
activity with moon contamination, but whether it could show a high accuracy and yield classes that were more 
complex than the six example classes was not tested. Real-world optical data often include noisy auroral images, 
such as those with clouds, moonlight, and sunlight contamination. Any ambiguity in the definition of the auro-
ral image hampers the automatic detection and the statistical analysis of the auroral occurrence. Therefore, it is 
important to distinguish the quality of the optical data, regardless of whether it is just an auroral image. A similar 
study using color all-sky images demonstrated that a DNN model called ResNet-5021 can classify the images 
into seven auroral classes with an average precision and F1 score of 92% and 90%,  respectively22. Here, precision 
and recall are the ratios of true positive (TP) to TP + false positive (FP) and that of TP to TP + false negative 
(FN), respectively. The F1 score is a harmonic mean of precision and recall. However, because the authors of 
this previous study did not train non-auroral images, such as those captured during cloudy conditions, it is still 
difficult to classify regularly captured color all-sky images and then perform a statistical analysis of the auroral 
occurrence rate. Thus, it is highly demanded to evaluate if machine-learning-based automated classification is 
sufficiently accurate for investigating the statistical characteristics of aurora such as its seasonal and local time 
distribution. It is also needed to test the feasibility of operating a notification system for the auroral appearance 
in a real-time manner.

In the current study, we automatically derived the yearly, monthly, and universal time (UT) variations of the 
auroral occurrence rate for the first time by classifying images captured over a period of 10 years using digital 
cameras in Tromsø, Norway ( 69.6◦ N , 19.2◦ E ). Refer to the Methods for details regarding the observation. We 
manually classified some of the observed images into eight classes, as shown in Fig. 1, and then, the ResNet-50 
model trained them. As described in a previous  study20, we defined Arc, Discrete, and Diffuse as the classes of 

Figure 1.  Sample images of the eight classes for the differentiation of all-sky images. The white dashed square 
in the image of the Arc class indicates the region used for training. For statistical analysis, we defined the auroral 
occurrence rate as the ratio of the Auroral classes (Arc, Discrete, and Diffuse) to the Observable classes (Auroral + 
Clear). Noisy aurora and No aurora classes are used in the bottom panel of Fig. 3.
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auroras that are not contaminated by moonlight or clouds and have a high quality. The Arc is a single or double 
stripe extending in the east-west direction, often observed before midnight as a precursor to auroral  breakup23. 
Discrete auroras are bright and curly auroras that can appear white or pink at the lower limit when they are par-
ticularly intense. The Diffuse aurora glows faintly and is mainly observed after midnight. The majority Diffuse 
is a pulsating aurora (PsA) that shows quasi-periodic variations in its brightness, i.e., variations ranging from a 
few to several tens of  seconds4,24. We also defined Clear as the time when no aurora was detected, even though 
any type of auroras were observable without the influence of moonlight or clouds. In the statistical analysis, these 
four classes were collectively referred to as the Observable classes, and only these classes were used to calculate the 
auroral occurrence rate. The definition of the auroral occurrence rate is the number of Auroral classes divided by 
the number of images of the Observable classes. To distinguish between the quality of the optical data, we defined 
Noisy aurora as the auroral images contaminated by moonlight or sunlight (Aurora but bright) and obscured by 
clouds (Aurora but cloudy). We have also added classes for the cloudy and dawn/dusk images. Although we can 
identify the Dusk & Dawn images by calculating the solar elevation angle, we prepared a specified class for them 
to simplify the overall workflow. A more detailed description of each class is given in the “Methods” section. In 
addition to the statistical analysis, we also introduce a real-time notification system for the auroral appearance 
using the classifier. If citizen scientists can use this system to quickly catch the appearance of aurora, they may 
be able to take more photographs with less effort. Therefore, this system will allow more citizen scientists to 
participate in research regarding space science more efficiently.

Results
Training of ResNet‑50. A total of 5530796 images were captured in Tromsø from 2011 to 2021 season, 
of which 87275 (1.6% of the data) were manually labeled and then used for the training and evaluation of the 
ResNet-50 model. The images were also manually divided into two categories, i.e., training and validation, for 
each class, as shown in Table 1. Because the inclusion of similar images in both the categories leads to an unrea-
sonably high accuracy, we ensured that no images observed on the same day were included in both the catego-
ries. Figure 2 shows the confusion matrix that exhibits the classification results of the trained ResNet-50 model 
against the validation data. All the validation images were allocated to a class having the largest probability. The 
values in each panel show the classification rate for each class. For example, the top-left cell shows that out of 
315 Arc images in the validation data, 96.2% were correctly classified as Arc by the trained classifier. The panels 
where the true label and predicted label coincide, which are correctly classified cases, are all reddish, indicating 
that the classification is highly accurate. The average precision and F1 score were 93.1% and 93.4%, respectively. 
Since one of the purposes of this study is to detect auroras automatically, it is particularly important to ascertain 
whether an image belongs to an Auroral class. For distinguishing whether an image belongs to an Auroral class, 
the precision and F1 score should be even higher, at 97.1% and 95.9%, respectively.

Figure 3 shows the observation and classification results for images from a night that was not used for either 
training or validation. On this night, a typical substorm, which comprised the Arc, Discrete, and Diffuse auro-
ras, was observed twice. The format of Fig. 3 follows that of a previous study about the automatic detection of 
 auroras20. The top row shows the all-sky images at several representative times ( T0 to T4 ), the second row is the 
time-series of the north-south cross-section of the all-sky image (so-called keogram), and the third row shows the 
classification probability of each class. Since T0 is shortly after sunset, the all-sky image and keogram are bluish. 
The classification result shows Dusk & Dawn with a 100% probability, which means that the classifier works cor-
rectly. From 17:00 UT, the sky darkened completely, as shown in the all-sky image at T1 . The classification result 
for this period was No aurora, which is also correct because this label is a combination of Clear and Cloudy, as 
already shown in Fig. 1. The green aurora appeared in the keogram from ∼19:30 UT and the classifier recognized 
it as Arc and Discrete. At T2 , a typical east-west arc was observed in the all-sky image and the classifier detected 
Arc with a probability of 100%. At T3 , an auroral breakup occurred, with an active discrete aurora covering most 
areas of the sky. The classifier detected Discrete correctly. After that, the Diffuse aurora was detected until 23:00 
UT, and a relatively dimmer diffuse aurora was also visible in the keogram and the all-sky image at T4 . The clas-
sifier was able to detect the aurora almost successfully through the entire episode of the auroral substorm from 
19:30 until 23:00 UT. Another substorm after midnight was also detected without any problem.

Interestingly, at 18:30 and 23:30 UT, the classifier detected Arc with a probability of ∼ 60% , and the faint 
aurora was visible near the northern limit (upper part) of the all-sky image at these times. These arcs appeared 
in a much smaller area than the typical aurora seen during substorms; thus, the classifier may not respond with 
a high probability value. These very faint auroras could be noise in the statistical analysis because sometimes, the 
classifier responded and sometimes, they did not. Based on this, we defined the auroral appearance as a time when 
the sum of the probabilities of the Auroral classes exceeded 80%. This threshold value was used for the statistical 
analysis that will be presented in the next section. Although all detections were performed automatically, we 

Table 1.  Number of images per class used for training and validation of the model. Training and validation do 
not include images obtained on the same day.

Label Arc Discrete Diffuse Clear AB AC DD Cloudy

Training 2352 3516 7114 7764 4309 2880 23,599 20,680

Validation 315 766 2133 1553 862 576 4720 4136
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eventually created images in the same format as that shown in Fig. 3 for all observation dates over 10 years, and 
visually confirmed that the classification results were correct to the same level as that demonstrated in Fig. 3.

Variations of auroral occurrence. Figure 4 shows the distribution of the auroral occurrence rate as a 
function of month and year over 10 years. The vertical axis is the month and the horizontal axis is the year of 
optical season, i.e., from September to March in the next year. Again, the auroral occurrence rate is defined as 
the number of the Auroral images divided by that of the Observable images. Each square panel filled with colors 
indicates the occurrence rate, the number of the Auroral images, and that of the Observable images. While the 
number of images varies widely from month to month, as it is affected by the length of cloudy periods and the 
temporal resolution, the occurrence rate is less affected by these factors. In September 2014 and 2018, where the 
numbers are unavailable, the camera was not operative due to the delay in starting the observation. Throughout 
the decade, the panel is mostly bluish from November to January, indicating a lower auroral occurrence rate. To 
make it easier to observe this tendency, we have added the right panel, which shows the monthly variation of the 
occurrence rate derived by summing the numbers over the decade. The panel clearly demonstrates the decreas-
ing trend of auroral occurrence in the winter solstice. Furthermore, it was found that there was no significant dif-
ference between the auroral occurrence rate in the autumn and spring equinoxes and that the graph was nearly 
lined symmetrical with respect to December. The same method was applied to plot the upper panel, which shows 
the annual variation of the auroral occurrence rate. It did not peak in the 2013 season, which was when the sun-
spot number reached its maximum during solar cycle 24, but instead, in the 2015 season, which corresponds to 
the early declining phase of the solar cycle. On the other hand, the auroral occurrence rate attained its minimum 
during the 2019 season, which was when the sunspot number reached its minimum.

Since all the images used in this study were captured in Tromsø, it is likely that local parameters representing 
the level of geomagnetic disturbances, such as the K-index, rather than macroscopic/global parameters, such 
as the sunspot number, would correlate well with the auroral occurrence rate. The K-index represents the geo-
magnetic disturbance in a 10-point scale (0–9) with a three-hour resolution; the higher the K-index, the more 
likely it is for an aurora to appear. Figure 5 shows the annual variation of the auroral occurrence rate shown 
in Fig. 4 and the ratio of time when the K-index was above 4 during a local night in Tromsø, i.e., 15–03 UT. 
Note that only days with more than 100 Observable images were included in the calculation. The blue and red 
lines attained their minimums in the 2012 and 2019 seasons, respectively, and a maximum in the 2015 season, 

Figure 2.  The classification result of the validation dataset by the trained ResNet-50 model. The top row shows 
that 96.2% of the 315 manually classified Arc images were correctly classified as Arc, while 2.9% were incorrectly 
classified as Aurora but bright. All the panels with matching true and predicted labels have high values of 
classified ratio, indicating high classifier accuracy.
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indicating that the level of local geomagnetic disturbance and automatically derived auroral occurrence rate are 
positively correlated over a long period of 10 years.

Figure 6 shows the monthly variation of the auroral occurrence rate shown in Fig. 4. The blue line covers 
all UT, while the red line covers only 19–02 UT, i.e., the time when the sky is completely dark from September 
to March. The occurrence rate of the red line, which is for limited UT periods, is higher than that in the blue 
line, suggesting that the auroral occurrence rate is lower in the early and later UT. In both the lines, the auroral 
occurrence rate attains its maximums in October and February and a minimum in December. This means that 
regardless of the length of the dark hours, the occurrence of auroras is higher in autumn and spring and lower 
in winter. Especially, the blue line shows a difference of nearly two-fold between the auroral occurrence rates in 
October and December. It has been pointed out since the beginning of the 20th century that the frequency of 
magnetic storms is higher near the spring and autumnal equinoxes, and lower around the summer and winter 
 solstices25. This effect is often interpreted using the misalignment of the Earth’s rotation and magnetic axes and 
the 30-day periodicity of the spiral structure of the solar wind, and is well known as the Russell–McPherron 
(R–M)  effect26. The monthly variation of the auroral occurrence rate is qualitatively consistent with the charac-
teristics of the R–M effect.

Figure 7 shows the UT distribution of the Observable classes obtained over a period of 10 years. Panel (a) 
shows the number of images, panel (b) shows the composition ratio of panel (a) for each UT bin, and panels 
(c)–(e) show the values of panel (b) for each Auroral class. In panel (a), while more than 25000 images were 
stably classified as Observable in 19–02 UT, the number of the images increased/decreased in 15–18/03–06 UT, 
respectively. This is due to the monthly change in the length of the dark time. To reduce this effect, the composi-
tion ratio of each class in each UT bin is shown in panel (b). The lower ratio of the Auroral classes to the Clear 
class in the early and late UT was consistent with the suggestion from Fig. 6 that auroras occur less frequently 
in these UT periods. The ratio of the Auroral classes reached its maximum at 22 UT, which roughly corresponds 
to 01 MLT. This result is consistent with the results of previous studies obtained by visual  detection9–11. Panel 
(b) shows that discrete auroras are dominant in the evening hours and diffuse auroras are dominant from the 
magnetic midnight (00 MLT ∼ 21 UT) to the morning. The comparison of panels (c) and (d) shows that the ratio 
of Arc is higher than that of Discrete in 15–18 UT, which may be due to the tendency that intense discrete auroras 
occur after the appearance of an arc-type  aurora23, as seen in Fig. 3. The Discrete auroras had a wide plateau at 
18–21 UT ( ∼21–00 MLT). By contrast, the ratio of Diffuse auroras gradually increased from the evening hours, 

Figure 3.  Observation and classification results from the night of 22–23 October 2017. The middle panel shows 
a keogram, which is a time series of the north-south cross-section of the all-sky image, and the bottom panel is 
the classification result for the same period. All-sky images at certain specific times ( T0 to T4 ) are displayed on 
the top. T0 to T4 are 16:00:01, 18:00:05, 20:04:39, 20:30:40, and 21:30:11 UT, respectively. From 19:30 to 23:00 
UT, the typical substorm, characterized by a sequential appearance of Arc, Discrete, and Diffuse, was almost 
perfectly classified. A similar substorm occurred again from midnight and was also classified correctly.
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peaked at 01 UT ( ∼ 04 MLT), and then decreased towards dawn. This trend is consistent with the results of other 
statistical analyses performed visually and using automated detection  techniques8,14,27.

A notification service for auroral activity. The results of the previous section have quantitatively 
revealed the annual, monthly, and UT variations of the auroral occurrence in Tromsø. However, such overall 

Figure 4.  Monthly occurrence rate of aurora for the past 10 years. Each panel shows, from top to bottom, the 
occurrence rate, number of Auroral classes, and number of Observable classes. The red panels indicate high 
occurrence rate, and the blue panels indicate low occurrence rate. The blue line in the upper panel shows annual 
variation in the occurrence rate obtained by data integration. Similarly, the blue line in the right panel shows 
monthly variation in the occurrence rate. The occurrence rate was the highest in the 2015 season and tended to 
be higher in fall and spring than in winter.

Figure 5.  The blue line shows annual variation in the occurrence rate of aurora. The red line shows the 
percentage of times when the K-index was 4 or higher during clear nights in Tromsø. Years with higher K-index 
have higher occurrence rates.
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statistical characteristics cannot be used to understand the auroral appearance at specific moments in the future. 
To overcome this limitation, we developed “Tromsø AI” (https:// troms oe- ai. cei. uec. ac. jp/), a web application 
that allows AI to monitor the auroral activity in Tromsø in real-time, instead of the human eye. Panel (a) in Fig. 8 
shows the top page at 01:08:03 UT on 19th January 2021. The all-sky image shown in the Latest View shows a 
dynamic discrete aurora, and its classification result, Latest Status, indicates that the image belongs to the Dis-
crete class with 99% probability. This page has a desktop notification feature of the auroral appearance, which 
sends a notification card shown in the upper right if an image belongs to the checked classes in the box at the top 
of the page (i.e., if the sum of the probabilities of the checked classes exceeds 80%). Note that a desktop notifica-
tion must be allowed in both the OS and the browser to use this function. The bottom of the page provides an 

Figure 6.  Monthly variation in the occurrence rate of aurora for all UT (blue line) and 19 to 02 UT only (red 
line). During 19 to 02 UT, the sky is completely dark in all the months from September to March in Tromsø. In 
both lines, the occurrence rate is the lowest in December, which includes the winter solstice, and it is high near 
the spring and autumn equinoxes.

00 MLT

(a)

(b)

(c)

(d)

(e)

Figure 7.  (a) Histogram showing the composition of images of Observable classes obtained over 10 years. A 
decrease in the number of images in 15–18 UT and 03–06 UT is due to the difference in the the length of the 
dark time. (b) The composition ratio of the number of images in the Observable classes. The occurrence rate of 
aurora was maximum at 22 UT (01 MLT). (c)–(e) Composition ratios of panel (b) for each Auroral class. The 
occurrence rate of discrete auroras (Arc and Discrete) peaked before 00 MLT and was almost zero after 01 UT 
(04 MLT). Diffuse was most likely to occur at 01 UT (04 MLT) and the occurrence rate was widely distributed 
across other UTs.

https://tromsoe-ai.cei.uec.ac.jp/
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ongoing keogram in the same format as that in Fig. 3, showing the auroral activity up to that time of the night. 
In addition, a user can browse all observation results for the last ten years by clicking on the “Archive” link at the 
bottom of the title. Panel (b) shows the page for the archived data. A user can select a season from the pull-down 
tab to view the calendar for the corresponding period (from September to April). Clicking on a date in the cal-
endar will display the keogram and movie for that night. Each date in the calendar has a fraction, the numerator 
of which is the number of images classified as Auroral classes and the denominator is the total number of images 
obtained that night. Days with a high number of Auroral images are shown in green color on the calendar.

Discussion
Figure 5 shows the positive correlation of the auroral occurrence rate with the ratio of the highest K-index time. 
Both reached their maximum in the 2015 season, which was an early declining phase of the solar activity. The 
Kp-index, which is a global version of the local K-indices, increases during the phases of declining solar  activity28, 
and our results demonstrate that the occurrence of auroras also increases in the early declining phase of the 
solar cycle. During this early declining phase, the auroral occurrence rate exceeded 70%. In contrast, before the 
solar maximum and during the solar minimum (the 2019 season), it was ∼35%, i.e., half as much as the peak. 
Figure 6 shows that the auroral occurrence rate tends to be higher in spring and autumn and lower in winter. 
Compared to the lowest auroral occurrence rate in December, the highest one in October was 65%, showing 
nearly a two-fold difference. This is most likely due to the R–M  effect26, which explains why geomagnetic storms 
are more frequent in the spring and autumn equinoxes and less frequent in the winter and summer solstices. 
This tendency has already been reported in previous  studies6,29, but because these previous studies have classified 
the images by human eye, not all the images could be classified by a stable/unique standard. In this study, since 
the classification is performed using a computer, the images taken over a 10-year period can be classified by the 
same standard in a short calculation time.

Figure 8.  (a) Top page of Tromsø AI. In the central part, the all-sky image and the classification result are 
displayed in real-time. In the lower part, the ongoing keogram from the sunset is displayed in the same format 
as Fig. 3. A desktop notification appears in the upper right when an image of the classes checked in “Notified 
Classes” is displayed. Clicking on “Archive” below the page title trans the archive page shown in panel (b). (b) 
A user can view a keogram and all-sky movie on any day by selecting a season from the drop-down menu and 
clicking on a date in the displayed calendar.
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Panels (c) to (e) in Fig. 7 show the occurrence rate of auroras from each Auroral class as a function of UT. 
For discrete auroras, which consists of Arc and Discrete auroras, the occurrence rate peaked in the pre-midnight 
sector and decreased sharply in the morning sector, as shown in previous  studies14,30. A slightly larger composi-
tion ratio of the Arc auroras compared with that of the Discrete auroras may reflect the fact that arc-type auroras 
are the main element of auroras that tend to appear under all geomagnetic  conditions31. The occurrence rate of 
Diffuse peaked in the morning sector, which is also consistent with previous  studies4,14,27,32,33. Diffuse auroras 
could originate due to magnetospheric waves, such as  chorus34–37 and electrostatic electron cyclotron harmonic 
(ECH)  waves38,39, the former often being widely distributed from the midnight to noon  sector40 and the latter 
from the pre-midnight to morning  sector41. In panel (e), the occurrence rate of diffuse auroras decreased in 
the morning sector owing to the effect of sunlight, but their occurrence over a wide range of UT was generally 
consistent with the distribution of the magnetospheric waves. These results indicate that the large number of the 
images taken in the last decade were classified successfully. The dependences of the occurrence rate obtained 
in this study will be useful not only for data analysis purposes, but also for a wide range of applications, from 
planning of campaign observations to personal travel.

The website shown in Fig. 8 was created to promote citizen science, and to provide easy access to past obser-
vation data. This website provides instant updates on the appearance of auroras in Tromsø. Furthermore, if this 
system is installed at multiple observatories, the broader distribution of auroras can be obtained in real-time. 
Moreover, unlike professional optical instruments, digital cameras can obtain color information. It has recently 
been suggested that the energy of precipitating electrons can be estimated qualitatively based on the color of a 
digital  image5, which can help enhance the contribution of citizen scientists to professional space science. The 
current auroral notification system can help the citizen scientist know the appearance of aurora and start their 
observation promptly. If they are able to capture more optical data with less efforts by using the system, the 
threshold for participating the auroral science would become lower. Therefore, the system introduced here is a 
promising approach to reveal new features of aurorae and improve our understanding of the processes underly-
ing these phenomena.

Methods
Optical observation in Tromsø, Norway. Since 2011, Nikon digital cameras (D5000, D5100 and D7200) 
have been capturing all-sky images almost every night from September to March with a temporal resolution of 
less than one minute at Ramfjordmoen Research Station in Tromsø, Norway ( 69.6◦N , 19.2◦E ); the station is 
operated by the UiT - the Arctic University of Norway. These images were not originally planned to be used for 
a statistical analysis of the auroras, as they were obtained to evaluate weather conditions during the acquisition 
of atmospheric temperature/wind observations using a sodium  LIDAR42–45 and multi-wavelength observations 
of auroras using a  photometer46–48. The digital cameras used were D5000 during 2010–2014, D5100 during 2015, 
and D7200 during 2016–2021. A Sigma 4.5 mm f/2.8 EX DC HSM Circular Fisheye lens was used. The temporal 
resolution, exposure duration, and ISO sensitivity are 1 min, 15 s, and 2500 during 2011–2013, and 30 s, 8 s, and 
3200 during 2014–2021, respectively. Although the shooting settings varied from year to year, the colors and 
shapes of the stars, clouds, and auroras in the JPEG images did not change significantly. The images taken by 
the digital camera are uploaded to the following URL: https:// www. isee. nagoya- u. ac. jp/ ~eiscat/ obs/ d5000/ html/ 
sky_ image. html. The original image size is 4496× 3000 pixels, but the uploaded image has been downsampled 
to 722× 480 pixels. In addition, the uploaded images are labeled with texts giving the time and directions of 
the image. By classifying the uploaded images, we conducted the statistical analysis and developed the real-time 
notification system.

Setting of training and definition of image classes. The classification algorithm is based on the previ-
ous  studies20,22, with minor modifications to apply it for noisy (i.e., contaminated auroral) images. One of our 
objectives is to detect an aurora in color all-sky images, including cloudy ones. The previous  study22 showed 
that the ResNet-50 model classifies auroras into seven classes with high accuracy, but an image without auroras 
was not considered. Here, the ResNet-50 means a residual network having 50 layers. The ResNets have skip 
connections between hidden layers, which makes it difficult to decrease accuracy even when the number of 
layers increases. The other  study20 proposed a design of six classes that can classify actual auroral data properly, 
although grayscale images were the target of the classification. Based on the results of these previous studies, we 
reconstructed the eight classes by renovationg their definitions based on the latter  study20 and classified images 
using the same model as the former  study22 (ResNet-50). To evaluate the auroral occurrence more accurately, 
we defined new classes of auroras with cloudy and moonlit conditions, which were not considered in the lat-
ter  study20. The details of the definition of each class are described below. The percentage of the field of view 
occupied by clouds was estimated based on visual inspection. The threshold value for bright and dark was not 
determined using the solar elevation angle, but by visually checking whether the darkness level was the same as 
that at midnight on a new moon day. This brightness standard was applied not only to the effects of sunlight, but 
also to those of moonlight. All images were downsampled to a resolution of 128 × 128 pixels as in the former 
 study22, as indicated by the white dashed square in the Arc panel in Fig. 1, before being used for training. Other 
pre-processing was not performed.

After the pre-processing, we fine-tuned the pre-trained weights on the ImageNet  dataset49 using the training 
data. The batch size and epoch were 128 and 4, respectively. The stochastic gradient descent (SGD) was used as 
the optimizer, and the learning rate and momentum were given arguments of 0.001 and 0.9, respectively. The 
program of the training was written using  Keras50.

https://www.isee.nagoya-u.ac.jp/%7eeiscat/obs/d5000/html/sky_image.html
https://www.isee.nagoya-u.ac.jp/%7eeiscat/obs/d5000/html/sky_image.html
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Arc. Images with one or two auroral arcs extending in an east-west direction, a dark background, and less 
than 20% of the field of view occupied by clouds. These auroras often appear the prior to the onset of substorms.

Discrete. Images with non-Arc discrete auroras, a dark background, and less than 20% of the field of view occu-
pied by clouds. These are intense auroras that often appear with the auroral breakup.

Diffuse. Images with diffuse auroras (including pulsating auroras), a dark background, and less than 20% of 
the field of view occupied by clouds.

Aurora but cloudy (AC). Images with auroras, a dark background, and more than 20% of the field of view 
occupied by clouds.

Aurora but bright (AB). Images with auroras and a bright background, regardless of the cloud cover.

Clear. Images with no aurora, a dark background, and less than 20% of the field of view occupied by clouds.

Cloudy. Images with no aurora, a dark background, and more than 20% of the field of view occupied by clouds.

Dusk and Dawn (DD). Images with no aurora and a bright background, regardless of the cloud cover. This class 
includes not only images brightened by sunlight, but also those illuminated by moonlight.

The training and validation datasets manually labeled from the above definitions can be downloaded from 
the following URL: https:// troms oe- ai. cei. uec. ac. jp/ ~nanjo/ public/ datas et/, which can be used by the readers to 
evaluate the performance of the classifier with auroral images taken at different places by using different cameras.

Despite the detailed classification, some images do not belong to any of the above classes. We did not use such 
images in the training because they do not contain the aurora and therefore would not affect the task of extracting 
aurora-containing images (Auroral classes + Noisy aurora) from a large number of the regularly captured images.

Data availability
The color all-sky images used in this study are available at https:// www. isee. nagoya- u. ac. jp/ ~eiscat/ obs/ d5000/ 
html/ sky_ image. html. Images for a past specific date in the past can be obtained by giving an 8-digit number in 
the format of YYYYMMDD. For example, images on 26 January 2022 are available at https:// www. isee. nagoya- 
u. ac. jp/ ~eiscat/ obs/ d5000/ html/ pre20 220126. html. The training and validation datasets used in this study are 
available at https:// troms oe- ai. cei. uec. ac. jp/ ~nanjo/ public/ datas et/. The K-index at Tromsø is available at https:// 
flux. phys. uit. no/ Kindi ce/ Listi ndex. html.
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