191 research outputs found

    On piezophase effects in mechanically loaded atomic scale Josephson junctions

    Full text link
    The response of an intrinsic Josephson contact to externally applied stress is considered within the framework of the dislocation-induced atomic scale Josephson effect. The predicted quasi-periodic (Fraunhofer-like)stress-strain and stress-current patterns should manifest themselves for experimentally accessible values of applied stresses in intrinsically defected (e.g.,twinned) crystals.Comment: REVTEX (epsf style), 2 EPS figure

    Effect of nonlinearity on the dynamics of a particle in dc field-induced systems

    Get PDF
    Dynamics of a particle in a perfect chain with one nonlinear impurity and in a perfect nonlinear chain under the action of dc field is studied numerically. The nonlinearity appears due to the coupling of the electronic motion to optical oscillators which are treated in adiabatic approximation. We study for both the low and high values of field strength. Three different range of nonlinearity is obtained where the dynamics is different. In low and intermediate range of nonlinearity, it reduces the localization. In fact in the intermediate range subdiffusive behavior in the perfect nonlinear chain is obtained for a long time. In all the cases a critical value of nonlinear strength exists where self-trapping transition takes place. This critical value depends on the system and the field strength. Beyond the self-trapping transition nonlinearity enhances the localization.Comment: 9 pages, Revtex, 6 ps figures include

    Inhomogeneous broadening of tunneling conductance in double quantum wells

    Full text link
    The lineshape of the tunneling conductance in double quantum wells with a large-scale roughness of heterointerfaces is investigated. Large-scale variations of coupled energy levels and scattering due to the short-range potential are taken into account. The interplay between the inhomogeneous broadening, induced by the non-screened part of large-scale potential, and the homogeneous broadening due to the scattering by short-range potentials is considered. It is shown that the large inhomogeneous broadening can be strongly modified by nonlocal effects involved in the proposed mechanism of inhomogeneity. Related change of lineshape of the resonant tunneling conductance between Gaussian and Lorentzian peaks is described. The theoretical results agree quite well with experimental data.Comment: 11 pages, 5 figure

    Quantum gates by coupled asymmetric quantum dots and controlled-NOT-gate operation

    Full text link
    A quantum computer based on an asymmetric coupled dot system has been proposed and shown to operate as the controlled-NOT-gate. The basic idea is (1) the electron is localized in one of the asymmetric coupled dots. (2)The electron transfer takes place from one dot to the other when the energy-levels of the coupled dots are set close. (3)The Coulomb interaction between the coupled dots mutually affects the energy levels of the other coupled dots. The decoherence time of the quantum computation and the measurement time are estimated. The proposed system can be realized by developing the technology of the single-electron memory using Si nanocrystals and the direct combination of the quantum circuit and the conventional circuit is possible.Comment: LaTeX, 7 pages, 5 figures, revised content, to appear in Phys. Rev.

    Coherent States of SU(l,1)SU(l,1) groups

    Full text link
    This work can be considered as a continuation of our previous one (J.Phys., 26 (1993) 313), in which an explicit form of coherent states (CS) for all SU(N) groups was constructed by means of representations on polynomials. Here we extend that approach to any SU(l,1) group and construct explicitly corresponding CS. The CS are parametrized by dots of a coset space, which is, in that particular case, the open complex ball CDlCD^{l}. This space together with the projective space CPlCP^{l}, which parametrizes CS of the SU(l+1) group, exhausts all complex spaces of constant curvature. Thus, both sets of CS provide a possibility for an explicit analysis of the quantization problem on all the spaces of constant curvature.Comment: 22 pages, to be published in "Journal of Physics A

    Floquet states and persistent currents transitions in a mesoscopic ring

    Full text link
    We consider the effect of an oscillating potential on the single-particle spectrum and the time-averaged persistent current of a one-dimensional phase-coherent mesoscopic ring with a magnetic flux. We show that in a ring with an even number of spinless electrons the oscillating potential has a strong effect on the persistent current when the excited side bands are close to the eigen levels of a pure ring. Resonant enhancement of side bands of the Floquet state generates a sign change of the persistent current.Comment: 2 figure

    PmoB subunit of particulate methane monooxygenase (pMMO) in Methylococcus capsulatus (Bath): The Cu^I sponge and its function

    Get PDF
    In this study, we describe efforts to clarify the role of the copper cofactors associated with subunit B (PmoB) of the particulate methane monooxygenase (pMMO) from Methylococcus capsulatus (Bath) (M. capsulatus). This subunit exhibits strong affinity toward Cu^I ions. To elucidate the high copper affinity of the subunit, the full-length PmoB, and the N-terminal truncated mutants PmoB_(33–414) and PmoB_(55–414), each fused to the maltose-binding protein (MBP), are cloned and over-expressed into Escherichia coli (E. coli) K12 TB1 cells. The Y374F, Y374S and M300L mutants of these protein constructs are also studied. When this E. coli is grown with the pmoB gene in 1.0 mM Cu^(II), it behaves like M. capsulatus (Bath) cultured under high copper stresswith abundant membrane accumulation and high CuI content. The recombinantPmoB proteins are verified by Western blotting of antibodies directed against the MBP sub-domain in each of the copper-enriched PmoB proteins. Cu K-edge X-rayabsorption near edge spectroscopy (XANES) of the copper ions confirms that all the PmoB recombinants are Cu^I proteins. All the PmoB proteins show evidence of a “dicopper site” according to analysis of the Cu extended X-ray absorption edge fine structure (EXAFS) of the membranes. No specific activities toward methane and propene oxidation are observed with the recombinant membrane-bound PmoB proteins. However, significant production of hydrogen peroxide is observed in the case of the PmoB_(33–414) mutant. Reaction of the dicopper site with dioxygenproduces hydrogen peroxide and leads to oxidation of the CuI ions residing in the C-terminal sub-domain of the PmoB subunit

    L-Edge Spectroscopy of Dilute, Radiation-Sensitive Systems Using a Transition-Edge-Sensor Array

    Get PDF
    We present X-ray absorption spectroscopy and resonant inelastic X-ray scattering (RIXS) measurements on the iron L-edge of 0.5 mM aqueous ferricyanide. These measurements demonstrate the ability of high-throughput transition-edge-sensor (TES) spectrometers to access the rich soft X-ray (100-2000eV) spectroscopy regime for dilute and radiation-sensitive samples. Our low-concentration data are in agreement with high-concentration measurements recorded by conventional grating-based spectrometers. These results show that soft X-ray RIXS spectroscopy acquired by high-throughput TES spectrometers can be used to study the local electronic structure of dilute metal-centered complexes relevant to biology, chemistry and catalysis. In particular, TES spectrometers have a unique ability to characterize frozen solutions of radiation- and temperature-sensitive samples.Comment: 19 pages, 4 figure

    Spintronics: Fundamentals and applications

    Get PDF
    Spintronics, or spin electronics, involves the study of active control and manipulation of spin degrees of freedom in solid-state systems. This article reviews the current status of this subject, including both recent advances and well-established results. The primary focus is on the basic physical principles underlying the generation of carrier spin polarization, spin dynamics, and spin-polarized transport in semiconductors and metals. Spin transport differs from charge transport in that spin is a nonconserved quantity in solids due to spin-orbit and hyperfine coupling. The authors discuss in detail spin decoherence mechanisms in metals and semiconductors. Various theories of spin injection and spin-polarized transport are applied to hybrid structures relevant to spin-based devices and fundamental studies of materials properties. Experimental work is reviewed with the emphasis on projected applications, in which external electric and magnetic fields and illumination by light will be used to control spin and charge dynamics to create new functionalities not feasible or ineffective with conventional electronics.Comment: invited review, 36 figures, 900+ references; minor stylistic changes from the published versio

    Effect of temperature on resonant electron transport through stochastic conduction channels in superlattices

    Get PDF
    We show that resonant electron transport in semiconductor superlattices with an applied electric and tilted magnetic field can, surprisingly, become more pronounced as the lattice and conduction electron temperature increases from 4.2 K to room temperature and beyond. It has previously been demonstrated that at certain critical field parameters, the semiclassical trajectories of electrons in the lowest miniband of the superlattice change abruptly from fully localised to completely unbounded. The unbounded electron orbits propagate through intricate web patterns, known as stochastic webs, in phase space, which act as conduction channels for the electrons and produce a series of resonant peaks in the electron drift velocity versus electric field curves. Here, we show that increasing the lattice temperature strengthens these resonant peaks due to a subtle interplay between thermal population of the conduction channels and transport along them. This enhances both the electron drift velocity and the influence of the stochastic webs on the current-voltage characteristics, which we calculate by making self-consistent solutions of the coupled electron transport and Poisson equations throughout the superlattice. These solutions reveal that increasing the temperature also transforms the collective electron dynamics by changing both the threshold voltage required for the onset of self-sustained current oscillations, produced by propagating charge domains, and the oscillation frequency.Comment: 8 figures, 12 page
    corecore