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We show that resonant electron transport in semiconductor superlattices with an applied electric
and tilted magnetic field can, surprisingly, become more pronounced as the lattice and conduction
electron temperature increases from 4.2 K to room temperature and beyond. It has previously been
demonstrated that at certain critical field parameters, the semiclassical trajectories of electrons in the
lowest miniband of the superlattice change abruptly from fully localised to completely unbounded.
The unbounded electron orbits propagate through intricate web patterns, known as stochastic webs,
in phase space, which act as conduction channels for the electrons and produce a series of resonant
peaks in the electron drift velocity versus electric field curves. Here, we show that increasing the
lattice temperature strengthens these resonant peaks due to a subtle interplay between thermal
population of the conduction channels and transport along them. This enhances both the electron
drift velocity and the influence of the stochastic webs on the current-voltage characteristics, which we
calculate by making self-consistent solutions of the coupled electron transport and Poisson equations
throughout the superlattice. These solutions reveal that increasing the temperature also transforms
the collective electron dynamics by changing both the threshold voltage required for the onset of
self-sustained current oscillations, produced by propagating charge domains, and the oscillation
frequency.

PACS numbers: 73.21.-b, 05.45.Mt, 72.20.Ht

I. INTRODUCTION

Semiconductor superlattices (SLs) are nanostructures
formed from several alternating layers of different semi-
conductor materials1–4. This periodic structure leads to
the formation of energy minibands that enable electrons,
in the presence of an electric field, to demonstrate a
number of interesting quantum-mechanical phenomena,
which include the formation of Wannier-Stark ladders,
sequential and resonant tunneling, Bragg reflections, and
Bloch oscillations. Consequently, SLs are of a great inter-
est for both fundamental and applied science1,5–15. Due
to the high mobility of miniband electrons and the very
high frequency of the Bloch and charge-domain oscilla-
tions, SLs have prospective applications in sub-THz and
THz electronic devices9,10,14,16,17.

Recently, it has been shown that a tilted magnetic field
applied to a SL can strongly affect, and hence control,
the electrical properties of the structure. Nonlinear in-
teraction between the electronic Bloch oscillations along
the superlattice and cyclotron motion in the plane of the
layers induces chaotic semiclassical electron dynamics,
which, depending on the ratio between the Bloch and cy-
clotron frequencies, either accelerate or decelerate charge
transport through the SL18,19. Coupling of cyclotron and
Bloch motion by a tilted magnetic field has also been
related to the Fiske effect in superconducting Joseph-
son junctions20. On resonance, when the Bloch and cy-
clotron frequencies are commensurate, the electrons ex-

hibit a unique type of quantum chaos, which does not
obey Kolmogorov-Arnold-Moser theory21. This type of
chaos is characterised by the formation of intricate “web-
like” structures, known in the literature as “stochastic
webs”21–23, which extend throughout the phase space
of the miniband electrons. The appearance of these
webs abruptly delocalises the electrons in real space, thus
significantly increasing their drift velocity18,24. Simi-
lar dynamics can occur in other spatially periodic sys-
tems in which wave interference gives rise to band trans-
port phenomena, including ultracold atoms in an opti-
cal lattice25, graphene26, and light propagating through
spatially-modulated photonic crystals27,28. On the quan-
tum level, such resonant delocalisation of the electrons
manifests itself in the formation of additional magnetic-
field-induced miniband structure corresponding to ex-
tended electron states, which extend across many periods
of the SL29. This delocalisation dramatically affects the
collective electron behavior by inducing multiple prop-
agating charge domains and GHz-THz current oscilla-
tions with frequencies and amplitudes much higher than
with no tilted field30. It has also been shown that in the
vicinity of Bloch-cyclotron resonances the usually unsta-
ble Bloch gain profile becomes stable31, which can be
used for the amplification of THz signals. Although the
above effects of the Bloch-cyclotron resonances on elec-
tron dynamics have been reported for different finite tem-
peratures, it is still unclear how the character of charge
transport in the SL changes with temperature.

In this paper, we study how increasing the electron and
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FIG. 1: (Color online) Schematic diagram of a semiconductor
superlattice with an electric field and a tilted magnetic field
applied. Red (green) arrows indicate co-ordinate axes (field
orientation). Blue (yellow) bands in the y − z plane repre-
sent quantum wells (tunnel barriers) within the superlattice.
Electric field, F, is applied anti-parallel to the x-axis and the
magnetic field, B, lies in the (x, z)-plane at an angle θ to the
x-axis.

lattice temperature affects the drift velocity of the elec-
trons in an electric and tilted magnetic field and, conse-
quently, the electric current through the SL. We find that
the thermal distribution of the electrons can, counter-
intuitively, enhance the effect of Bloch-cyclotron reso-
nances on the drift velocity. In particular, increasing the
temperature makes the resonant maxima in the drift ve-
locity versus electric field characteristics more prominent.
This shifts the frequency and amplitude of the collective
charge-domain oscillations, associated with each resonant
peak, together with the threshold voltage at which the
oscillations switch on.

II. ELECTRON DRIFT VELOCITY

We consider the field configuration shown schemat-
ically in Fig. 1. The electric field F = (−F, 0, 0)
is applied perpendicular to the plane of the SL lay-
ers and anti-parallel to the x-axis. The magnetic field
B = (B cos θ, 0, B sin θ) lies in the (x, z)-plane at an an-
gle θ to the x-axis. The semiclassical equation of motion
for a miniband electron is

ṗ(t) = −e[F+ (∇pE(p(t)) ×B)] (1)

where e is the magnitude of the electron charge, p(t) =
(px(t), py(t), pz(t)) is the electron’s crystal momentum at
time t and E(p) = ∆(1− cos(pxd/~))/2+ (p2y + p2z)/2m

∗

is the dispersion relation for the lowest miniband within
the tight-binding approximation. Here, ∆ is the mini-
band width, d is the SL period, and m∗ is the electronic
effective mass for motion in the (y, z)-plane.

Equation (1) can be expressed in its constituent
components18,24

ṗx(t) = eF − ω⊥py(t) (2)

ṗy(t) =
d∆m∗ω⊥

2~
sin

(

px(t)d

~

)

− ω‖pz(t) (3)

ṗz(t) = ω‖py(t), (4)

where ω‖=eB cos θ/m∗ and ω⊥=eB sin θ/m∗ are the cy-
clotron frequencies corresponding to the magnetic field
components along the x- and z-axes, respectively. The
electron velocity along the x-direction is given by

vx(t) = ẋ(t) = v0 sin

(

px(t)d

~

)

, (5)

where the peak velocity v0 = ∆d/(2~).
To determine the drift velocity, ud, of electrons with

initial momentum P = (Px, Py , Pz) we use the Esaki-Tsu
formalism1,19:

ud(P) = ν

∫ ∞

0

vx(t)e
−νtdt, (6)

where ν is the electron scattering rate32.
In the case of non-zero temperature, T , one should

take into account the thermal distribution of electron
momenta f(Px, Py, Pz), which we assume to obey the
Boltzmann statistics5,33,34

f(P) =
1

Z
e
− ∆

2kBT (1−cos Pxd

~ )−
P2
y+P2

z

2m∗kBT . (7)

In Eq. (7), Z can be found from the normalisation con-
dition

∫ π~/d

−π~/d

∫ ∞

−∞

∫ ∞

−∞

f(P)dPxdPydPz = 1,

which yields

Z = (2π)2m∗kBT
~

d
I0

(

∆

2kBT

)

e
− ∆

2kBT , (8)

where I0(x) is a modified Bessel function of the first kind.
Then, the drift velocity of miniband electrons at temper-
ature T is

vd =

∫ π~/d

−π~/d

∫ ∞

−∞

∫ ∞

−∞

f(P)ud(P)dPxdPydPz . (9)

In the Appendix we show, following previous work33,34,
that for small angles θ, for which ω⊥ ≪ ω‖ and ω⊥ ≪
ωB, where ωB = eFd/~ is the frequency of the Bloch
oscillations, the drift velocity can be approximated by
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vd = v0
I1(∆/2kBT )

I0(∆/2kBT )
exp

[

−m∗kBT

(

ω⊥

ω‖

d

~

)2
]

∞
∑

n=−∞

In

[

m∗kBT

(

ω⊥

ω‖

d

~

)2
]

ν(ωB − nω‖)

ν2 + (ωB − nω‖)2
, (10)

where In(x), n = 1, 2 . . . are the modified Bessel functions
of the first kind. When B = 0, Eq. (10) reduces to

vd = v0
I1(∆/2kBT )

I0(∆/2kBT )

νωB

ν2 + ω2
B

. (11)

Note that Eq. (11) can be derived exactly5 by inte-
grating Eqs. (2)-(4) with B = 0, and substituting the
resulting expressions for px, py and pz into Eqs. (5) and
(9). For T = 0 the equation (11) yields the famous Esaki-
Tsu relation for the electron drift velocity1.
In the general case of arbitrary parameters F , B and

θ, Eqs. (2)-(4), which, in principle, can exhibit deter-
ministic chaos18,19,24, cannot be solved analytically, and
therefore the electron drift velocity must be calculated
numerically. In our computations we use the following SL
parameters, taken from recent experiments19,35: d = 8.3
nm, ∆ = 19.1 meV, ν = 4× 1012 s−1 and m∗ = 0.067me,
where me is the mass of a free electron.

III. NUMERICAL CALCULATION OF THE

ELECTRON DRIFT VELOCITY

In our numerical simulations, we integrate Eqs. (2)-
(4) for a number of different initial conditions p(0) = P,
which were randomly generated according to the proba-
bility density function (7). This function can be decom-
posed into momentum components

f(P) =
1√

2πm∗kBT
exp

(

−
P 2
y

2m∗kBT

)

(12)

× 1√
2πm∗kBT

exp

(

− P 2
z

2m∗kBT

)

× d

2π~I0

(

∆

2kT

) exp

(

∆

2kBT
cos

(

Pxd

~

))

.

As a consequence of this decomposition, one can use
independent random number generators for each of the
initial momentum components Px, Py, Pz. The values
of Py and Pz can be obtained from standard routines36

for the generation of uncorrelated random numbers obey-
ing a Gaussian distribution with zero mean and variance
(kBTm

∗)1/2. However, the generation of random values
of Px requires a more sophisticated procedure, which we
now explain.
Let us find a continuous function, g(ξ), which trans-

forms a random variable, ξ, uniformly distributed within

the interval [−π, π), into a random variable, g, having a
distribution

f(g) =

d exp

(

∆

2kBT

)

2π~I0

(

∆

2kBT

) exp

(

− ∆

2kBT

[

1− cos

(

gd

~

)])

.

(13)
To find g(ξ), we use the probability conservation re-

lation (1/2π)dξ = f(g)dg, which gives us a differential
equation for g(ξ):

dg(ξ)

dξ
=

1

2πf [g(ξ)]
. (14)

Due to the symmetry of the distribution in Eq. (13),
g(0) = 0, which can be used as an initial condition for Eq.
(14). Moreover, it is possible to show that g(±π) = ±π
for any values of temperature T . However, in the general
case of arbitrary argument, ξ, g(ξ) cannot be expressed
analytically. We therefore evaluate it by numerical in-
tegration of Eq. (14). Figure 2 illustrates the function
g(ξ) for three different temperatures T = 50 K (curve 1),
T = 150 K (curve 2), T = 300 K (curve 3). As the figure
shows, g(ξ) is an odd function, which becomes almost
linear as T increases.
In practice, numerical integration of Eq. (14) signifi-

cantly slows the simulations. Therefore, we used approx-
imate analytical solutions. We found that for small tem-
peratures, T ≤ 50 K, the distribution (13) can be well
approximated by a Gaussian with zero mean and vari-
ance 2kBT~/(∆d). Hence, in this case Px can be also
defined using the Gaussian random number generator.

-4

-2

 0

 2

g(ξ)

-4 -2  0  2

ξ

1

2

3

4

4

FIG. 2: (Color online) Function g(ξ) for three different tem-
peratures: T = 50 K (curve 1), T = 150 K (curve 2), T = 300
K (curve 3). d = 8.3 nm, ∆ = 19.1 meV, ν = 4× 1012 s−1.
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TABLE I: Coefficients ai for the polynomial expansion in Eq.
(15) at different temperatures T

T a1 a3 a5 a7

100K 0.42008 0.04124 −0.00755 0.00094

125K 0.49513 0.02223 0.00087 0.00039

150K 0.55066 0.01556 0.00210 0.00010

175K 0.59097 0.01440 0.00309 −0.00003

200K 0.62431 0.01505 0.00329 −0.00009

225K 0.65325 0.01626 0.00312 −0.00012

250K 0.67807 0.01744 0.00282 −0.00013

275K 0.69868 0.01836 0.00249 −0.00013

300K 0.71677 0.01905 0.00217 −0.00012

325K 0.73367 0.01954 0.00186 −0.00011

350K 0.74852 0.01983 0.00159 −0.00010

375K 0.76150 0.01996 0.00136 −0.00009

400K 0.77299 0.01998 0.00116 −0.00009

For larger temperatures T > 50 K we approximate the
solution of Eq. (14) by the following polynomial expres-
sion

f(ξ) = a1ξ + a3ξ
3 + a5ξ

5 + a7ξ
7 +O(ξ9), (15)

where the coefficients an for different temperatures are
given in Tab. I. Note that with increasing T , the coeffi-
cient a1, corresponding to the linear term, grows, whereas
the other (nonlinear) coefficients, a3, a5, a7, decrease.
Also, the higher-order terms can be neglected.
Thus, to calculate the drift velocity, vd, for given tem-

perature, T , we (i) randomly generate the components
of the initial momentum vector P, (ii) use them as an
initial condition to integrate Eqs. (2)-(4), (iii) substitute
the results of this integration into Eqs. (5) and (6) to
determine the drift velocity, vd, for the given initial mo-
mentum, and (iv) average vd over all randomly-chosen
initial momenta.
To ensure that the above procedure for simulating

the thermal distribution of electron momenta is accurate
enough, we check it for the case of no applied magnetic
field, for which vd can be calculated analytically5 using
Eq. (11). The solid curves in Fig. 3(a) shows vd(F ) plots
calculated using Eq. (11) for T = 4.2 K (upper curve)
and T = 300 K (lower curve). The data points marked by
symbols “•” and “◦” show values of vd obtained numeri-
cally for T = 4.2 K and T = 300 K, respectively. The fig-
ure demonstrates excellent agreement between the exact
Eq. (11) and our numerical procedure. More precisely,
we find that by averaging over N ≥ 200000 trajectories,
the relative error does not exceed 1− 2%. Consequently,
in all our simulations we used N = 250000.
Eq. (11) shows that the maximum drift velocity, vmax

d ,
is achieved when ωB = ν, i.e. when a significant fraction
of the electrons complete whole Bloch oscillations before
scattering. As ωB increases beyond ν, vmax

d decreases

 0
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FIG. 3: (Color online) (a) Variation of drift velocity, vd, with
electric field, F , determined analytically from Eq. (11) (solid
curves) and calculated numerically (symbols) for T = 4.2 K
(curve 1 and “•” ) and T = 300 K (curve 2 and “◦”). (b)
Variation of maximal drift velocity, vmax

d , with T calculated
analytically (solid line) and numerically (•). Numerical sim-
ulations involved averaging over 250000 different initial mo-
menta, P, chosen randomly.

with increasing T according to the equation

vmax
d (T ) = v0

I1

(

∆

2kBT

)

I0

(

∆

2kBT

) . (16)

The variation of vmax
d with T predicted by Eq. (16)

is shown by the solid curve in Fig. 3(b). For compari-
son, the result of our numerical simulation is shown by
the symbols “•”. The figure shows excellent quantitative
agreement between our analytical and numerical results.

IV. EFFECT OF TEMPERATURE ON

ELECTRON DRIFT VELOCITY IN A TILTED

MAGNETIC FIELD

We have also applied the numerical procedure de-
scribed in the previous section to the case of a tilted mag-
netic field, for which the drift velocity vd cannot be de-
termined analytically. Figure 4 shows vd versus F curves
calculated numerically for B = 15 T and θ = 40◦ at
several different temperatures T .
In contrast to the case of B = 0 [Fig. 3(a)], all of

the vd(F ) curves in Fig. 4 exhibit multiple maxima. The
first maximum, for the lowest value of F , also exists when
B = 0 and, as noted in the previous section, is associated
with the onset of Bloch oscillations. All other maxima oc-
cur because of the enhanced acceleration of the electrons
whenever the ratio of the Bloch and cyclotron frequencies
r = ωB/ω⊥ = 0.5, 1, 2, or 3 (upper scale in Fig. 4)18,19,24.
Remarkably, as T increases, the first peak weakens signif-
icantly, whereas the amplitude of the cyclotron-Bloch res-
onances (i.e. the peak-to-valley ratio) increases sharply
even though the peak vd values decrease. Moreover, for
high enough temperatures, new peaks, reflecting higher
order resonances, appear in the vd(F ) dependencies.
To qualitatively understand the effects of tempera-

ture on drift velocity, we analysed single electron or-
bits described by the Eqs. (2)-(4). Figure 5(a) shows
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FIG. 4: (Color online) Variation of drift velocity, vd, with
(lower scale) electric field, F , (upper scale) r = ωB/ω|| calcu-
lated for B = 15 T and θ = 40◦ and different temperatures.
Curve 1 corresponds to T = 0 K; curve 2 to T = 50 K; curve 3
to T = 200 K; curve 4 to T = 300 K; curve 5 to T = 400 K.

a stroboscopic Poincaré section phase portrait for the
r = ωB/ω|| = 3 resonance (B = 15 T and θ = 40◦),
taking the strobe period to be TB = 2π/ωB. In ad-
dition to localised quasi-periodic orbits, which appear
in the stroboscopic section as dotted closed curves, the
phase space also contains a resonant unbounded structure
formed by chaotic layers and known in the literature as a
“stochastic web”21,22. It has been shown previously18,19

that electrons having initial momenta in the stochastic
web move rapidly through the SL, so producing a large
resonant peak in the vd(F ) curve, as shown in Fig. 4
for r = 0.5, 1, 2, 3, 4. The height of each resonant peak
increases as more electrons have momenta lying within
the stochastic web. In Figs. 5(b),(c) we show enlarged
fragments of the stochastic web near the origin together
with a grey-scale map indicating the probability of find-
ing an electron with given initial momentum components
(Py, Pz) at T = 50 K [Fig. 5 (b)] and T = 400 K [Fig.
5(c)]. Comparison of these two figures reveals that, with
increasing temperature, the probability of the electron’s
initial momentum lying within the stochastic web grows.
At the same time, the number of electrons with higher
initial momenta, and thus higher velocity, also increases.
Together, these two effects increase vd and thus enhance
the Bloch - cyclotron resonant peaks in Fig. 4.

Interestingly, although Eq. (10) is unable correctly to
predict the exact electron drift velocity for an arbitrary
magnetic field configuration, it still captures certain qual-
itative trends in the variation of vd with the field param-
eters and T . First, we note that according to Eq. (10),
the expression for vd consists of a series of resonant terms
proportional to ν(ωB±nω||)/[ν

2+(ωB±nω||)
2]. The term

with n = 0 reflects the Esaki-Tsu vd(F ) curve, whereas
other terms with n 6= 0 correspond to the Bloch - cy-
clotron resonances, for which ωB/ω|| = n is an integer.
Moreover, since, for very large x, In(x) has the asymp-
totic form In(x) ∝ exp(x)/

√
x, as T increases in Eq. (10)

FIG. 5: Stroboscopic Poincaré section of electron trajectories
in the (py, pz) plane taken with strobe period TB = 2π/ωB

for the r = ωB/ω|| = 3 resonance (B = 15 T, θ = 40◦). (a)
“Stochastic web” and neighboring quasi-periodic orbits; (b),
(c) enlarged part of “stochastic web” (black dots) and prob-
ability (grey-scale map in which lighter shades correspond to
higher probability) that the initial momentum (Py , Pz) lies in
the given area of the (py, pz) plane calculated for T = 50 K
(b), and T = 400 K (c).

the higher-order resonant terms strengthen. Under cer-
tain conditions this leads to the appearance of additional
peaks in vd(F ), which we see in our numerical simulations
shown in Fig. 4.
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V. EFFECT OF TEMPERATURE ON

ELECTRIC CURRENT THROUGH THE

SEMICONDUCTOR SUPERLATTICE.

In order to study the effects of temperature on the
collective dynamics of electrons in the SL, we self-
consistently solve discrete versions of the current con-
tinuity and Poisson equations, splitting the miniband
transport region into N = 480 layers, each of width
∆x = L/N = 0.24 nm, which is small enough to ap-
proximate a continuum30,37.
The evolution of the electron density, nm, in the mth

layer, whose right-hand edge is at x = m∆x, is given by
the discretised current continuity equation

e∆x
dnm

dt
= Jm−1 − Jm, m = 1 . . .N, (17)

where Jm−1 [Jm] are the areal current densities at the
left- [right-] hand edges of the mth layer. Within the
drift-diffusion approximation, the current density is

Jm = enmvd
(

Fm

)

+D
(

Fm

) nm+1 − nm

∆x
(18)

where Fm is the mean electric field in the mth layer30,

D
(

Fm

)

=
vd
(

Fm

)

d

1− exp
(

− eFmd
kT

) exp

(

−eFmd

kT

)

(19)

is the diffusion coefficient3, and the drift velocity vd
(

Fm

)

is obtained by using the approach described in Section
III. Since Jm depends on the local drift velocity, vd

(

Fm

)

,
the collective electron dynamics depend directly on the
single-electron orbits.
The electric field Fm [Fm+1] at the left- [right-] hand

edges of the mth layer can be described by the discretised
Poisson equation

Fm+1 =
e∆x

ε0εr
(nm − nD) + Fm, m = 1 . . .N, (20)

where ε0 and εr = 12.5 are, respectively, the absolute
and relative permittivities and nD = 3× 1022 m−3 is the
n-type doping density in the SL layers19. In the emitter
and collector Ohmic contacts, F = F0.
We use Ohmic boundary conditions to determine the

current, J0 = σF0, in the heavily doped emitter contact
whose electrical conductivity σ = 3788 Sm−1.19 The volt-
age, V , applied to the device is a global constraint given
by

V = U +
∆x

2

N
∑

m=1

(Fm + Fm+1), (21)

where the voltage, U , dropped across the contacts in-
cludes the effect of charge accumulation and depletion in
the emitter and collector regions and a contact resistance
R = 17 Ω38. We calculate the current as

I(t) =
A

N + 1

N
∑

m=0

Jm, (22)

FIG. 6: (Color online) I(V ) characteristics calculated for
B = 0 T (a) and B = 15 T, θ = 40◦ (b) at (from top to bot-
tom) T = 0 K, 50 K, 100 K, 200 K and 300 K. In (a), data
points on dashed line show values of (Vth, Ith) calculated from
Eqs. (23) and (26) and discussed in the text.

where A = 5×10−10 m2 is the cross-sectional area of the
SL.3,19,30

The model described by Eqs. (17) - (22) exhibits both
constant and oscillating electric current, depending on
the voltage, V , applied to the device. Typical current-
voltage [I(V )] characteristics are shown in Fig. 6 both
for B = 0 and when a tilted magnetic field (B = 15 T,
θ = 40◦) is applied. Note that for V values at which
current oscillations occur, the DC current was calculated
by averaging I(t) over time.

When B = 0 [Fig. 6 (a)], the I(V ) curves reveal the
usual Esaki-Tsu-like behavior, characterised by a single
maximum, which is associated with the onset of single-
electron Bloch oscillations throughout much of the SL
transport region. Figure 6 (a) shows that as T increases,
the peak current decreases, which agrees well with a num-
ber of experimental observations39,40. This decrease of
the peak current reflects that of the maximal electron
drift velocity, predicted by Eq. (16), as T increases. In
particular, the factor I1(∆/2kBT )/I0(∆/2kBT ), charac-
terising the effect of the temperature on the drift veloc-
ity in Eq. (16), also accurately describes the drop of
the peak current both in our simulations and in earlier
experiments discussed in Refs.39,40
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The electron dynamics changes significantly when a
tilted magnetic field is applied to the SL. Figure 6 (b)
shows typical I(V ) curves calculated, in the presence of
a tilted magnetic field, for a range of temperatures. All of
the I(V ) curves reveal clear Bloch-cyclotron resonances,
which manifest themselves through the appearance of ad-
ditional features in the curves19. For low temperatures,
the Bloch-cyclotron resonances produce sudden changes
in the slope of the I(V ) curves [for example, the kink
near V = 0.3 V in the (upper) I(V ) curve calculated for
T = 0 in Figure 6 (b)] and also shift the position of the
current peak. As T increases, these effects become more
prominent and, eventually, give rise to additional maxima
in the I(V ) curves, e.g. the double peaks at T = 200 K.
This evolution of the I(V ) characteristics originates from
the variation of the vd(F ) curves with changing temper-
ature, shown in Fig. 4. Comparison of Figs. 6 (a) and
(b) shows that although the maximum current decreases
with increasing temperature in both cases, the peak DC
current is always larger in the presence of a tilted mag-
netic field. This can be explained by the strong resonant
enhancement of vd produced by the Bloch-cyclotron res-
onances. Moreover, as Fig. 4 indicates, with increasing
temperature the amplitude of these resonances increases
and so the difference between the peak currents for B = 0
and for B 6= 0 becomes larger.

When the applied voltage, V , exceeds some critical
value, Vth, which depends on T , B, and θ, the stationary
state of the system loses its stability, and the electric
current starts to oscillate at a frequency, f , which, for
the given parameters, is in the microwave range. These
current oscillations are associated with the formation of
traveling charge domains3,30.

The variation of the oscillation frequency, f , with V
is shown in Fig. 7 for a range of T . Note that for each
T value, the corresponding f(V ) curve starts at a par-
ticular threshold voltage, Vth, above which I(t) oscilla-
tions occur. In general, as V increases, f decreases for
both B = 0 [Fig. 7 (a)] and B = 15 T, θ = 40◦ [Fig. 7
(b)]. This can be understood in terms of the vd(F ) curves
shown in Figs. 3 and 4. These figures suggest that when
F is sufficiently large, vd decreases with increasing F for
both B = 0 and B = 15 T. Moreover, further increas-
ing F in this regime slows the electrons even more. The
applied voltage produces an inhomogeneous electric field
distribution throughout the SL layers, which is deter-
mined by Eqs. (17)-(21). As V increases, the region of
high electric field inside the SL, where vd is small, also
increases and so the speed of the charge domains is low.
The larger the region of high electric field, the smaller the
average velocity of the charge domains and, hence, the
lower the frequency of current oscillations. When B = 15
T and θ = 40◦, the multiple peaks in the vd(F ) curve
tend to keep the average vd value high, which means
that the charge domains move faster than for B = 0.
In addition, the onset of Bloch-cyclotron resonances in-
creases the maximal vd value that the electrons attain
for given T [see Fig. 4]. All of these factors improve the

B=0 T
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 (
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(b)

FIG. 7: (Color online) Variation of the generation frequency,
f , with voltage, V , applied to the SL calculated for B = 0 T
(a) and B = 15 T, θ = 40◦ (b) at the temperatures indicated.

propagation speed of charge domains in the presence of
a tilted magnetic field. Thus, for given V , the frequency
of charge domain oscillations (if they occur at that V ) is
higher when a tilted magnetic field is applied.

The evolution of the amplitude of the current oscilla-
tions, ∆I, with V is shown in Fig. 8. Comparison of Figs.
8 (a) and 8 (b), reveals that applying a tilted magnetic
field at any temperature allows one to generate current
oscillations of higher amplitude and power. The mech-
anisms that produce this power enhancement were dis-
cussed in detail in Ref.30. In particular, it was shown
that multiple peaks in the vd(F ) curves induce multiple
propagating charge domains, which strengthen the cur-
rent oscillations. Since the multi-peak character of the
vd(F ) curves persists over a wide range of T (see Fig.
4), the power enhancement induced by a tilted magnetic
field occurs even at room temperature.

Remarkably, the modification of the I(V ) curves by a
tilted magnetic field can lead to the appearance of new
regions of negative differential conductance, for example
associated with the two peaks in the I(V ) curve at T =
200 K (purple curve in Fig. 6). In this case, there are
several distinct regions of V within which the SL exhibits
current oscillations [see Fig. 8 (b)].
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FIG. 8: (Color online) Variation of the amplitude of the cur-
rent oscillation, ∆I , with voltage, V , applied to the SL cal-
culated for B = 0 T (a) and B = 15 T, θ = 40◦ (b) at the
temperatures indicated.

Figures 7 and 8 indicate that for both B = 0 and for
B = 15 T, the threshold voltage for current oscillations,
Vth, depends non-trivially on T . For the low temperature
range T . 100 K, increasing T decreases Vth. But as T
increases further, Vth starts to increase. This is due to
the effect of temperature on the current density, J , which
is described by Eqs. (18) and (19). As noted above, the
generation of oscillating current in the SL is associated
with the formation of traveling change domains, which
occurs when the voltage, USL

th , dropped across the active
layers of the SL becomes sufficiently large3,30. Eq. (21)
shows that this voltage is the difference between the total
voltage, V , applied to the SL and the voltage, U , dropped
across the contacts. The voltage, U , in turn, may be ex-
pressed as U = IR+Uc, where Uc describes the effect of
charge accumulation and depletion in the emitter and col-
lector regions. Thus, any changes in the maximal value
of J and, therefore, of I, will affect U , and thus shift the
threshold voltage Vth. For low temperatures, when elec-
tron diffusion can be neglected, increasing T decreases
the maximal electron drift velocity and, thus, the max-
imal value of I. This reduces the voltage, U , dropped
across the contacts, since this is proportional to the cur-
rent through those contacts. When U decreases but V
remains constant, the voltage, USL

th , dropped across the

active layers of the SL increases. Thus, within some tem-
perature range, increasing T decreases Vth.
The value of Vth and the corresponding critical DC

current Ith = I(Vth) can be estimated analytically at low
T and when B = 0. If one neglects electron diffusion
and uses the drift velocity given by Eq. (16), the critical
current, Ith, at temperature T can be estimated as

Ith(T ) = I0th
I1(∆/2kBT )

I0(∆/2kBT )
, (23)

where I0th is the critical current for T = 0 K. According to
Eq. (21), the critical voltage, Vth(T ), required for current
oscillations is

Vth(T ) = Uc + Ith(T )R+ USL
th , (24)

where

USL
th =

∆x

2

N
∑

m=1

(F th
m + F th

m+1) (25)

is the voltage dropped across the SL layers. Assuming
that Uc and USL

th are almost independent of T , one ob-
tains

Vth(T ) = V 0
th − I0thR

(

1− I1(∆/2kBT )

I0(∆/2kBT )

)

, (26)

where V 0
th is the critical voltage at T = 0. From Eqs.

(23) and (26) it follows that

Vth(T ) = V 0
th +R(Ith(T )− I0th), (Ith(T ) < I0th). (27)

The Ith(Vth) curve defined by Eq. (27) is shown by
the dashed line in Fig. 6 (a). The open circles mark
the coordinates (Vth(T ), Ith(T )) for the five different T
values corresponding to the five I(V ) plots shown in the
figure. The values of V 0

th and I0th were taken from the
I(V ) curve for T = 0. From Figs. 6 (a) and 7(a) it is
easy to see that for the low T values considered (≤ 300
K), the analytical values of Vth and Ith obtained from Eq.
(27) are in excellent quantitative agreement with those
inferred from the numerical I(V ) curves.
For large T , the diffusion contribution to the current

becomes important and Eq. (27) fails. As T increases,
the current through the SL and the voltage dropped
across the contacts also increase, thereby raising Vth.
The same mechanism operates when B 6= 0. In this

case, Vth is larger than for B = 0 (see Fig. 7). This
is because in the presence of a tilted magnetic field, the
maximal drift velocity is larger due to the onset of Bloch-
cyclotron resonances (compare Figs. 3 and 4).

VI. CONCLUSIONS

In conclusion, we have shown that a tilted magnetic
field strongly affects, and can significantly enhance, the
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transport characteristics of SLs – even at room temper-
ature. The temperature dependence of the electron drift
velocity in the presence of a tilted magnetic field is quite
different from the B = 0 case. In particular, increasing
T quickly suppresses the B = 0 Esaki-Tsu peak in the
vd(F ) curve but has a much smaller effect when a tilted
magnetic field is applied. In this geometry, increasing T
sometimes even enhances the drift velocity peaks, relative
to the background, caused by the Bloch-cyclotron reso-
nances. As a result, when B and θ are both non-zero, the
electrons move faster, which increases both the DC- and
AC-components of the current through the SL and also
improves its high-frequency performance. The effects of
temperature on the vd(F ) curves also transform the SL’s
I(V ) curves by inducing new instabilities and transport
regimes, which we hope will stimulate future experimen-
tal and theoretical studies. Since the effects that we have
demonstrated are generic features of semiclassical energy
band transport, we expect similar phenomena to occur
in, for example, cold atoms25,41 and photonic crystals27.
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VIII. APPENDIX

We solved Eqs. (2)-(4) assuming ω|| ≫ ω⊥. Under this
condition Eqs. (2)-(4) can be linearised as

ṗx(t) = eF − ω⊥py (28)

ṗy(t) = −ω‖pz(t) (29)

ṗz(t) = ω‖py(t), (30)

which for initial conditions px(0) = p‖, py(0) = Py,
pz(0) = Pz yields

px(t) = p‖ + eF t− ω⊥

ω‖
p⊥ sin(ω‖t+ ϕ0) +

ω⊥

ω‖
p⊥ sinϕ0,

py(t) = p⊥ cos(ω‖t+ ϕ0), (31)

pz(t) = p⊥ sin(ω‖t+ ϕ0),

where p⊥ =
√

P 2
y + P 2

z , and ϕ0 = atan(Pz/Py).

Eq. (31) for the crystal momentum can be used to
calculate the electron velocity along the SL (x) axis as a
function of time, t:

vx(t) = v0 sin

(

px(t)d

~

)

= v0 sin

[

p‖d

~
+ ωBt−

ω⊥

ω‖

d

~
p⊥ sin(ω‖t+ ϕ0) +

ω⊥

ω‖

d

~
p⊥ sinϕ0

]

=

v0
2i

[

exp

(

i
p‖d

~
+ iωBt− i

ω⊥

ω‖

d

~
p⊥ sin(ω‖t+ ϕ0) + i

ω⊥

ω‖

d

~
p⊥ sinϕ0

)

− (32)

exp

(

−i
p‖d

~
− iωBt+ i

ω⊥

ω‖

d

~
p⊥ sin(ω‖t+ ϕ0)− i

ω⊥

ω‖

d

~
p⊥ sinϕ0

)]

,

where ωB = eFd/~ is frequency of the Bloch oscillations
and v0 = ∆d/(2~) is the maximal velocity in the given
miniband.

Using the Jacobi-Anger expansion for the Bessel func-
tions we obtain

vx(t) =
v0
2i

[

ei
p‖d

~

∞
∑

n=−∞

∞
∑

k=−∞

Jk

(

ω⊥

ω‖

d

~
p⊥

)

ei(ωB−kω‖)tJn

(

ω⊥

ω‖

d

~
p⊥

)

eiϕ0(n−k) (33)

−e−i
p‖d

~

∞
∑

n=−∞

∞
∑

k=−∞

Jk

(

ω⊥

ω‖

d

~
p⊥

)

e−i(ωB−kω‖)tJn

(

ω⊥

ω‖

d

~
p⊥

)

e−iϕ0(n−k)

]

.

The drift velocity, ud(p‖, p⊥), of electrons with initial mo- mentum components p‖ and p⊥ can be calculated using
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the Esaki-Tsu formula (6). Substituting (33) in (6) we get

ud(p‖, p⊥,, ϕ0) =
v0
2i

[

A(p⊥, ϕ0)e
i
p‖d

~ −B(p⊥, ϕ0)e
−i

p‖d

~

]

, (34)

with

A(p⊥, ϕ0) =

∞
∑

n=−∞

∞
∑

k=−∞

Jk

(

ω⊥

ω‖

d

~
p⊥

)

Jn

(

ω⊥

ω‖

d

~
p⊥

)

eiϕ0(n−k) ν

ν − i(ωB − kω‖)
,

B(p⊥, ϕ0) =

∞
∑

n=−∞

∞
∑

k=−∞

Jk

(

ω⊥

ω‖

d

~
p⊥

)

Jn

(

ω⊥

ω‖

d

~
p⊥

)

e−iϕ0(n−k) ν

ν + i(ωB − kω‖)
.

To find the drift velocity, vd, at finite temperature T we
average ud(p‖, p⊥,, ϕ0) according to the thermal distribu-

tion of electron momenta (7). In the current notations
the definition of vd becomes

vd =

∫ π~/d

−π~/d

∫ ∞

−∞

∫ π

−π

ud(p‖, p⊥,, ϕ0)f(p‖, p⊥)p⊥dp‖dp⊥dϕ0, (35)

with

f(p‖, p⊥) =
1

Z
exp

[

− ∆

2kBT

(

1− cos
p‖d

~

)

− p2⊥
2m∗kBT

]

,

and Z is given by Eq.(8)

To determine vd from the above integral expression, we
first evaluate the integral over p‖, which can be written
as

ud(p⊥, ϕ0) =
1

Z

v0
2i
A(p⊥, ϕ0)e

− ∆
2kBT

∫ π~/d

−π~/d

exp

(

i
p‖d

~

)

exp

[

∆cos
p‖d

~

2kBT

]

dp‖−

− 1

Z

v0
2i

B(p⊥, ϕ0)e
− ∆

2kBT

∫ π~/d

−π~/d

exp

(

−i
p‖d

~

)

exp

[

∆cos
p‖d

~

2kBT

]

dp‖

or

ud(p⊥, ϕ0) =
1

Z

v0
2i

A(p⊥, ϕ0)e
− ∆

2kBT

∫ π~/d

−π~/d

∞
∑

n=−∞

In

(

∆

2kBT

)

ei
d
~
(n+1)p‖dp‖−

− 1

Z

v0
2i
B(p⊥, ϕ0)e

− ∆
2kBT

∫ π~/d

−π~/d

∞
∑

n=−∞

In

(

∆

2kBT

)

ei
d
~
(n−1)p‖dp‖ =

=
2π

Z

v0
2i

~

d
e
− ∆

2kBT I1

(

∆

2kBT

)

[A(p⊥, ϕ0)−B(p⊥, ϕ0)]
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At the next step we perform integration over p⊥ and
ϕ0

vd =

∫ ∞

0

∫ π

−π

ud(p⊥, ϕ0) exp

[

− p2⊥
2m∗kBT

]

p⊥dp⊥dϕ0

vd =
2π

Z

v0
2i

~

d
e
− ∆

2kBT I1

(

∆

2kBT

)
∫ ∞

0

∫ π

−π

∞
∑

n=−∞

∞
∑

k=−∞

Jk

(

ω⊥

ω‖

d

~
p⊥

)

Jn

(

ω⊥

ω‖

d

~
p⊥

)

e−iϕ0(n−k)

×
[

ν

ν − i(ωB − kω‖)
− ν

ν + i(ωB − kω‖)

]

exp

[

− p2⊥
2m∗kBT

]

p⊥dp⊥dϕ0 =

=
(2π)2v0

Z

~

d
e
− ∆

2kBT I1

(

∆

2kBT

)
∫ ∞

0

∞
∑

n=−∞

J2
n

(

ω⊥

ω‖

d

~
p⊥

)

ν(ωB − nω‖)

ν2 + (ωB − nω‖)2
× exp

[

− p2⊥
2m∗kBT

]

p⊥dp⊥,

(36)

Taking into account that J−n(x) = (−1)nJn(x), we can rewrite (36)

vd =
1

2

(2π)2v0
Z

~

d
e
− ∆

2kBT I1

(

∆

2kBT

) ∞
∑

n=0

[
∫ ∞

0

J2
n

(

ω⊥

ω‖

d

~
p⊥

)

ν(ωB − nω‖)

ν2 + (ωB − nω‖)2
× exp

[

− p2⊥
2m∗kBT

]

p⊥dp⊥ + (37)

+

∫ ∞

0

J2
n

(

ω⊥

ω‖

d

~
p⊥

)

ν(ωB + nω‖)

ν2 + (ωB − nω‖)2
× exp

[

− p2⊥
2m∗kBT

]

p⊥dp⊥

]

.

The integral

∫ ∞

0

J2
n

(

ω⊥

ω‖

d

~
p⊥

)

exp

[

− p2⊥
2m∗kBT

]

p⊥dp⊥ = m∗kBT exp

[

−m∗kBT

(

ω⊥

ω‖

d

~

)2
]

In

[

m∗kBT

(

ω⊥

ω‖

d

~

)2
]

(38)

is, for n > −1, a special from of the second Weber ex-
ponential integral42. After integration and re-indexing

the sum in (37), and substitution of the expression for Z
from (8) we obtain the final formula for the drift velocity

vd = v0
I1(∆/2kBT )

I0(∆/2kBT )
exp

[

−m∗kBT

(

ω⊥

ω‖

d

~

)2
]

∞
∑

n=−∞

In

[

m∗kBT

(

ω⊥

ω‖

d

~

)2
]

ν(ωB − nω‖)

ν2 + (ωB − nω‖)2
.
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