202 research outputs found

    CKD-712, (S)-1-(α-naphthylmethyl)-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline, Inhibits the NF-ÎșB Activation and Augments Akt Activation during TLR4 Signaling

    Get PDF
    Since CKD-712 has been developed as an anti-inflammatory agent, we examined the effect of CKD-712 during TLR4 signaling. Using HEK293 cells expressing TLR4, CKD-712 was pre-treated 1 hr before LPS stimulation. Activation of NF-ÎșB was assessed by promoter assay. The activation of ERK, JNK, p38, IRF3 and Akt was measured by western blotting. CKD-712 inhibited the NF-ÎșB signaling triggered by LPS. The activation of ERK, JNK, p38 or IRF3 was not inhibited by CKD-712. On the contrary the activation of these molecules was augmented slightly. The activation of Akt with stimulation of LPS was also enhanced with CKD-712 pre-treatment at lower concentration, but was inhibited at higher concentration. We suggest that during TLR4 signaling CKD-712 inhibits NF-ÎșB activation. However, CKD-712 augmented the activation of Akt as well as Map kinases. Therefore, we suggest that CKD-712 might have a role as an immunomodulator

    Heme-oxygenase-1 induction and carbon monoxide-releasing molecule inhibit lipopolysaccharide (LPS)-induced high-mobility group box 1 release in vitro and improve survival of mice in LPS- and cecal ligation and puncture-induced sepsis model in vivo. Mol Ph

    Get PDF
    ABSTRACT We examined our hypothesis that heme-oxygenase-1 (HO-1)-derived carbon monoxide (CO) inhibits the release of highmobility group box 1 (HMGB1) in RAW264.7 cells activated with lipopolysaccharide (LPS) in vitro and in LPS-or cecal ligation and puncture (CLP)-induced septic mice in vivo, so that HO-1 induction or CO improves survival of sepsis in rodents. We found that pretreatment with HO-1 inducers (hemin, cobalt protoporphyrin IX) or transfection of HO-1 significantly inhibited HMGB1 release, which was blocked by HO-1 small interfering RNA, in cells activated by LPS. Carbon monoxide-releasing molecule 2 (CORM-2) but not bilirubin or deferoxamine inhibited HMGB1 release in LPS-activated macrophages. Oxyhemoglobin reversed the effect of HO-1 inducers on HMGB1 release. Translocation of HMGB1 from nucleus to cytosol was significantly inhibited by HO-1 inducers, CORM-2, or HO-1 transfection. Neutralizing antibodies to tumor necrosis factor (TNF)-␣, interleukin (IL)-1␀, interferon-␀, and N -nitro-L-arginine methyl ester hydrochloride but not N-[2-(cyclohexyloxyl)-4-nitrophenyl]-methane sulfonamide (NS-398) significantly inhibited HMGB1 release in LPS-activated cells. Production of TNF-␣, IL-1␀ , and IFN-␀ was significantly reduced by pretreatment of HO-1 inducers, CORM-2, or HO-1 transfection in LPS-activated cells. Plasma levels of HMGB1 in mice challenged with LPS or CLP were significantly reduced by the administration of HO-1 inducers or CORM-2, which was accompanied by either reduction (pretreatment) or no change (delayed administration) of serum TNF-␣ and IL-1␀ levels. Regardless of pretreatment or delayed administration, CORM-2 and hemin rescued mice from lethal endotoxemia and sepsis induced by LPS or CLP. Taken together, we concluded that HO-1-derived CO reduces HMGB1 release in LPS-activated cells and LPS-or CLP-induced animal model of sepsis. Sepsis is defined as a systemic inflammatory response syndrome from a microbial infection that results from excessive stimulation of the host immune system by pathogen components to produce various proinflammatory cytokines, and their overproduction causes systemic inflammation that can lead to the lethal multiple organ damage ABBREVIATIONS: HMGB1, high-mobility group box 1; HO-1, heme-oxygenase-1; CORM-2, carbon monoxide-releasing molecule II; LPS, lipopolysaccharide; CLP, cecal ligation and puncture; CoPPIX, cobalt protoporphyrin IX; COX, cyclooxygenase; DFO, deferoxamine mesylate; L-NAME, N -nitro-L-arginine methyl ester hydrochloride; iNOS, inducible nitric-oxide synthase; methane sulfonamide; siRNA, small interfering RNA; TNF-␣, tumor necrosis factor-␣; IL-1␀, interleukin-1␀; INF-␀, interferon-␀; ELISA, enzymelinked immunosorbent assay; HbO 2 , oxyhemoglobin; DMSO, dimethyl sulfoxide

    Peptidylarginine deiminase 2 citrullinates MZB1 and promotes the secretion of IgM and IgA

    Get PDF
    IntroductionMZB1 is an endoplasmic reticulum residential protein preferentially expressed in plasma cells, marginal zone and B1 B cells. Recent studies on murine B cells show that it interacts with the tail piece of IgM and IgA heavy chain and promotes the secretion of these two classes of immunoglobulin. However, its role in primary human B cells has yet to be determined and how its function is regulated is still unknown. The conversion of peptidylarginine to peptidylcitrulline, also known as citrullination, by peptidylarginine deiminases (PADs) can critically influence the function of proteins in immune cells, such as neutrophils and T cells; however, the role of PADs in B cells remains to be elucidated.MethodAn unbiased analysis of human lung citrullinome was conducted to identify citrullinated proteins that are enriched in several chronic lung diseases, including rheumatoid arthritis-associated interstitial lung disease (RA-ILD), chronic obstructive pulmonary disease, and idiopathic pulmonary fibrosis, compared to healthy controls. Mass spectrometry, site-specific mutagenesis, and western blotting were used to confirm the citrullination of candidate proteins. Their citrullination was suppressed by pharmacological inhibition or genetic ablation of PAD2 and the impact of their citrullination on the function and differentiation of human B cells was examined with enzyme-linked immunosorbent assay, flow cytometry, and co-immunoprecipitation.ResultsCitrullinated MZB1 was preferentially enriched in RA-ILD but not in other chronic lung diseases. MZB1 was a substrate of PAD2 and was citrullinated during the differentiation of human plasmablasts. Ablation or pharmacological inhibition of PAD2 in primary human B cells attenuated the secretion of IgM and IgA but not IgG or the differentiation of IgM or IgA-expressing plasmablasts, recapitulating the effect of ablating MZB1. Furthermore, the physical interaction between endogenous MZB1 and IgM/IgA was attenuated by pharmacological inhibition of PAD2.DiscussionOur data confirm the function of MZB1 in primary human plasmablasts and suggest that PAD2 promotes IgM/IgA secretion by citrullinating MZB1, thereby contributing to the pathogenesis of rheumatoid arthritis and RA-ILD

    The hypotensive effect of acute and chronic AMP-activated protein kinase activation in normal and hyperlipidemic mice

    Get PDF
    AMP-activated protein kinase (AMPK) is present in the arterial wall and is activated in response to cellular stressors that raise AMP relative to ADP/ATP. Activation of AMPK in vivo lowers blood pressure but the influence of hyperlipidemia on this response has not been studied. ApoE-/- mice on high fat diet for 6 weeks and age-matched controls were treated with the AMPK activator, AICAR daily for two weeks. Under anesthesia, the carotid artery was cannulated for blood pressure measurements. Aortic tissue was removed for in vitro functional experiments and AMPK activity was measured in artery homogenates by Western blotting. ApoE-/- mice had significantly raised mean arterial pressure; chronic AICAR treatment normalized this but had no effect in normolipidemic mice, whereas acute administration of AICAR lowered mean arterial pressure in both groups. Chronic AICAR treatment increased phosphorylation of AMPK and its downstream target acetyl-CoA carboxylase in normolipidemic but not ApoE-/- mice. In aortic rings, AMPK activation induced vasodilation and an anticontractile effect, which was attenuated in ApoE-/- mice. This study demonstrates that hyperlipidemia dysregulates the AMPK pathway in the arterial wall but this effect can be reversed by AMPK activation, possibly through improving vessel compliance

    Resveratrol Inhibits Inflammatory Responses via the Mammalian Target of Rapamycin Signaling Pathway in Cultured LPS-Stimulated Microglial Cells

    Get PDF
    Resveratrol have been known to possess many pharmacological properties including antioxidant, cardioprotective and anticancer effects. Although current studies indicate that resveratrol produces neuroprotection against neurological disorders, the precise mechanisms for its beneficial effects are still not fully understood. We investigate the effect of anti-inflammatory and mechamisms of resveratrol by using lipopolysaccharide (LPS)-stimulated murine microglial BV-2 cells.BV-2 cells were treated with resveratrol (25, 50, and 100 ”M) and/or LPS (1 ”g/ml). Nitric oxide (NO) and prostaglandin E2 (PGE2) were measured by Griess reagent and ELISA. The mRNA and protein levels of proinflammatory proteins and cytokines were analysed by RT-PCR and double immunofluorescence labeling, respectively. Phosphorylation levels of PTEN (phosphatase and tensin homolog deleted on chromosome 10), Akt, mammalian target of rapamycin (mTOR), mitogen-activated protein kinases (MAPKs) cascades, inhibitor ÎșB-α (IÎșB-α) and cyclic AMP-responsive element-binding protein (CREB) were measured by western blot. Resveratrol significantly attenuated the LPS-induced expression of NO, PGE2, inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), tumor necrosis factor-α (TNF-α), interleukin-1ÎČ (IL-1ÎČ) and nuclear factor-ÎșB (NF-ÎșB) in BV-2 cells. Resveratrol increased PTEN, Akt and mTOR phosphorylation in a dose-dependent manner or a time-dependent manner. Rapamycin (10 nM), a specific mTOR inhibitor, blocked the effects of resveratrol on LPS-induced microglial activation. In addition, mTOR inhibition partially abolished the inhibitory effect of resveratrol on the phosphorylation of IÎșB-α, CREB, extracellular signal-regulated kinase 1/2 (ERK1/2), c-Jun N-terminal protein kinase (JNK), and p38 mitogen-activated protein kinase (p38 MAPK).This study indicates that resveratrol inhibited LPS-induced proinflammatory enzymes and proinflammatory cytokines via down-regulation phosphorylation of NF-ÎșB, CREB and MAPKs family in a mTOR-dependent manner. These findings reveal, in part, the molecular basis underlying the anti-inflammatory properties of resveratrol

    AMPK in Pathogens

    Get PDF
    During host–pathogen interactions, a complex web of events is crucial for the outcome of infection. Pathogen recognition triggers powerful cellular signaling events that is translated into the induction and maintenance of innate and adaptive host immunity against infection. In opposition, pathogens employ active mechanisms to manipulate host cell regulatory pathways toward their proliferation and survival. Among these, subversion of host cell energy metabolism by pathogens is currently recognized to play an important role in microbial growth and persistence. Extensive studies have documented the role of AMP-activated protein kinase (AMPK) signaling, a central cellular hub involved in the regulation of energy homeostasis, in host–pathogen interactions. Here, we highlight the most recent advances detailing how pathogens hijack cellular metabolism by suppressing or increasing the activity of the host energy sensor AMPK. We also address the role of lower eukaryote AMPK orthologues in the adaptive process to the host microenvironment and their contribution for pathogen survival, differentiation, and growth. Finally, we review the effects of pharmacological or genetic AMPK modulation on pathogen growth and persistence.CIHR -Canadian Institutes of Health Researc

    Regulation of fibroblast Fas expression by soluble and mechanical pro-fibrotic stimuli

    Full text link
    Abstract Background Fibroblast apoptosis is a critical component of normal repair and the acquisition of an apoptosis-resistant phenotype contributes to the pathogenesis of fibrotic repair. Fibroblasts from fibrotic lungs of humans and mice demonstrate resistance to apoptosis induced by Fas-ligand and prior studies have shown that susceptibility to apoptosis is enhanced when Fas (CD95) expression is increased in these cells. Moreover, prior work shows that Fas expression in fibrotic lung fibroblasts is reduced by epigenetic silencing of the Fas promoter. However, the mechanisms by which microenvironmental stimuli such as TGF-ÎČ1 and substrate stiffness affect fibroblast Fas expression are not well understood. Methods Primary normal human lung fibroblasts (IMR-90) were cultured on tissue culture plastic or on polyacrylamide hydrogels with Young’s moduli to recapitulate the compliance of normal (400 Pa) or fibrotic (6400 Pa) lung tissue and treated with or without TGF-ÎČ1 (10 ng/mL) in the presence or absence of protein kinase inhibitors and/or inflammatory cytokines. Expression of Fas was assessed by quantitative real time RT-PCR, ELISA and Western blotting. Soluble Fas (sFas) was measured in conditioned media by ELISA. Apoptosis was assessed using the Cell Death Detection Kit and by Western blotting for cleaved PARP. Results Fas expression and susceptibility to apoptosis was diminished in fibroblasts cultured on 6400 Pa substrates compared to 400 Pa substrates. TGF-ÎČ1 reduced Fas mRNA and protein in a time- and dose-dependent manner dependent on focal adhesion kinase (FAK). Surprisingly, TGF-ÎČ1 did not significantly alter cell-surface Fas expression, but did stimulate secretion of sFas. Finally, enhanced Fas expression and increased susceptibility to apoptosis was induced by combined treatment with TNF-α/IFN-Îł and was not inhibited by TGF-ÎČ1. Conclusions Soluble and matrix-mediated pro-fibrotic stimuli promote fibroblast resistance to apoptosis by decreasing Fas transcription while stimulating soluble Fas secretion. These findings suggest that distinct mechanisms regulating Fas expression in fibroblasts may serve different functions in the complex temporal and spatial evolution of normal and fibrotic wound-repair responses.https://deepblue.lib.umich.edu/bitstream/2027.42/143539/1/12931_2018_Article_801.pd

    Uzbekistan: health system review.

    No full text
    Uzbekistan is a central Asian country that became independent in 1991 with the break-up of the Soviet Union. Since then, it has embarked on several major health reforms covering health care provision, governance and financing, with the aim of improving efficiency while ensuring equitable access. Primary care in rural areas has been changed to a two-tiered system, while specialized polyclinics in urban areas are being transformed into general polyclinics covering all groups of the urban population. Secondary care is financed on the basis of past expenditure and inputs (and increasingly self-financing through user fees), while financing of primary care is increasingly based on capitation. There are also efforts to improve allocative efficiency, with a slowly increasing share of resources devoted to the reformed primary health care system. Health care provision has largely remained in public ownership but nearly half of total health care expenditure comes from private sources, mostly in the form of out-of-pocket expenditure. There is a basic benefits package, which includes primary care, emergency care and care for certain disease and population categories. Yet secondary care and outpatient pharmaceuticals are not included in the benefits package for most of the population, and the reliance on private health expenditure results in inequities and catastrophic expenditure for households. While the share of public expenditure is slowly increasing, financial protection thus remains an area of concern. Quality of care is another area that is receiving increasing attention
    • 

    corecore