20 research outputs found

    Two-component spike nanoparticle vaccine protects macaques from SARS-CoV-2 infection

    Get PDF
    Brouwer et al. present preclinical evidence in support of a COVID-19 vaccine candidate, designed as a self-assembling two-component protein nanoparticle displaying multiple copies of the SARS-CoV-2 spike protein, which induces strong neutralizing antibody responses and protects from high-dose SARS-CoV-2 challenge.The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic is continuing to disrupt personal lives, global healthcare systems, and economies. Hence, there is an urgent need for a vaccine that prevents viral infection, transmission, and disease. Here, we present a two-component protein-based nanoparticle vaccine that displays multiple copies of the SARS-CoV-2 spike protein. Immunization studies show that this vaccine induces potent neutralizing antibody responses in mice, rabbits, and cynomolgus macaques. The vaccine-induced immunity protects macaques against a high-dose challenge, resulting in strongly reduced viral infection and replication i

    Contribution des modèles du macaque rhésus infecté par un SIV sauvage ou atténué à la compréhension de la dynamique lymphocytaire lors de l'infection de l'homme par le VIH (importance de l'apport thymique)

    No full text
    Dans le modèle du macaque rhésus infecté par un SIV pathogène de type sauvage, nous avons éprouvé l'hypothèse de l'épuisement des capacités prolifératives comme cause possible du déclin du nombre de lymphocytes T CD4-K Dans une seconde étude, nous avons évalué la pathogénicité à long-terme d'un virus atténué, ainsi que la dynamique lymphocytaire au cours d'une telle infection. Nous montrons qu'au cours de l'infection, le nombre de lymphocytes T CD8+ activés augmente progressivement dans le sang et dans les ganglions des animaux infectés par un SIV sauvage. Cette augmentation est corrélée avec la replication virale et l'évolution vers un SIDA. En revanche, nous n'observons aucune augmentation du nombre de lymphocytes T CD4+ en cycle. Ainsi, ces résultats mettent en évidence des comportements distincts des populations lymphocytaires T CD4+ et CD8+ suite à une activation, Lors de l'infection du macaque par un SIV atténué, nous montrons qu'en dépit d'une réplication virale très faible, ce virus conserve des propriétés pathogènes. La réplication virale, ainsi que l'activation de lymphocytes T CD8+ corrèlent positivement avec la vitesse d'évolution vers la maladie. Alors que l'apport thymique en lymphocytes T CD8+ est globalement augmenté, une relation très significative existe entre l'apport thymique en lymphocytes T CD4+ dans le sang périphérique et la non-progression vers la maladie. Globalement, nos données suggèrent que l'apport thymique en nouveaux lymphocytes T serait un facteur déterminant dans l'immunopathologie qui mène au SIDA.PARIS7-Bibliothèque centrale (751132105) / SudocSudocFranceF

    Simian Immunodeficiency Virus Promoter Exchange Results in a Highly Attenuated Strain That Protects against Uncloned Challenge Virus

    No full text
    Among the many simian immunodeficiency virus (SIV) immunogens, only live attenuated viral vaccines have afforded strong protection to a natural pathogenic isolate. Since the promoter is crucial to the tempo of viral replication in general, it was reasoned that promoter exchange might confer a novel means of attenuating SIV. The core enhancer and promoter sequences of the SIV macaque 239nefstop strain (NF-κB/Sp1 region from −114 bp to mRNA start) have been exchanged for those of the human cytomegalovirus immediate-early promoter (CMV-IE; from −525 bp to mRNA start). During culture of the resulting virus, referred to as SIVmegalo, on CEMx174 or rhesus macaque peripheral blood mononuclear cells, deletions arose in distal regions of the CMV-IE sequences that stabilized after 1 or 2 months of culture. However, when the undeleted form of SIVmegalo was inoculated into rhesus macaques, animals showed highly controlled viremia during primary and persistent infection. Compared to parental virus infection in macaques, primary viremia was reduced by >1,000-fold to undetectable levels, with little sign of an increase of cycling cells in lymph nodes, CD4(+) depletion, or altered T-cell activation markers in peripheral blood. Moreover, in contrast to wild-type infection in most infected animals, the nef stop mutation did not revert to the wild-type codon, indicating yet again that replication was dramatically curtailed. Despite such drastic attenuation, antibody titers and enzyme-linked immunospot reactivity to SIV peptides, although slower to appear, were comparable to those seen in a parental virus infection. When animals were challenged intravenously at 4 or 6 months with the uncloned pathogenic SIVmac251 strain, viremia was curtailed by ∼1,000-fold at peak height without any sign of hyperactivation in CD4(+)- or CD8(+)-T-cell compartment or increase in lymph node cell cycling. To date, there has been a general inverse correlation between attenuation and protection; however, these findings show that promoter exchange constitutes a novel means to highly attenuate SIV while retaining the capacity to protect against challenge virus

    IL-7 induces immunological improvement in SIV-infected rhesus macaques under antiviral therapy.

    No full text
    International audienceDespite efficient antiretroviral therapy (ART), CD4+ T cell counts often remain low in HIV-1-infected patients. This has led to IL-7, a crucial cytokine involved in both thymopoiesis and peripheral T cell homeostasis, being suggested as an additional therapeutic strategy. We investigated whether recombinant simian IL-7-treatment enhanced the T cell renewal initiated by ART in rhesus macaques chronically infected with SIVmac251. Six macaques in the early chronic phase of SIV infection received antiretroviral treatment. Four macaques also received a 3-wk course of IL-7 injections. Viral load was unaffected by IL-7 treatment. IL-7 treatment increased the number of circulating CD4+ and CD8+ memory T cells expressing activation (HLA-DR+, CD25+) and proliferation (Ki-67+) markers. It also increased naive (CD45RAbrightCD62L+) T cell counts by peripheral proliferation and enhanced de novo thymic production. The studied parameters returned to pretreatment values by day 29 after the initiation of treatment, concomitantly to the appearance of anti-IL-7 neutralizing Abs, supporting the need for a nonimmunogenic molecule for human treatment. Thus, IL-7, which increases T cell memory and de novo renewal of naive T cells may have additional benefits in HIV-infected patients receiving ART

    HIV-1 clade promoters strongly influence spatial and temporal dynamics of viral replication in vivo

    No full text
    Although the primary determinant of cell tropism is the interaction of viral envelope or capsid proteins with cellular receptors, other viral elements can strongly modulate viral replication. While the HIV-1 promoter is polymorphic for a variety of transcription factor binding sites, the impact of these polymorphisms on viral replication in vivo is not known. To address this issue, we engineered isogenic SIVmac239 chimeras harboring the core promoter/enhancer from HIV-1 clades B, C, and E. Here it is shown that the clade C and E core promoters/enhancers bear a noncanonical activator protein–1 (AP-1) binding site, absent from the corresponding clade B region. Relative ex vivo replication of chimeras was strongly dependent on the tissue culture system used. Notably, in thymic histocultures, replication of the clade C chimera was favored by IL-7 enrichment, which suggests that the clade C polymorphism in the AP-1 and NF-κB binding sites is involved. Simultaneous infection of rhesus macaques with the 3 chimeras revealed a strong predominance of the clade C chimera during primary infection. Thereafter, the B chimera dominated in all tissues. These data show that the clade C promoter is particularly adapted to sustain viral replication in primary viremia and that clade-specific promoter polymorphisms constitute a major determinant for viral replication

    Computed tomography and [18F]-FDG PET imaging provide additional readouts for COVID-19 pathogenesis and therapies evaluation in non-human primates

    No full text
    Non-human primates (NHPs) are particularly relevant as preclinical models for SARS-CoV-2 infection and nuclear imaging may represent a valuable tool for monitoring infection in this species. We investigated the benefit of computed X-ray tomography (CT) and [18F]-FDG positron emission tomography (PET) to monitor the early phase of the disease in a large cohort (n = 76) of SARS-CoV-2 infected macaques. Following infection, animals showed mild COVID-19 symptoms including typical lung lesions. CT scores at the acute phase reflect the heterogeneity of lung burden following infection. Moreover, [18F]-FDG PET revealed that FDG uptake was significantly higher in the lungs, nasal cavities, lung-draining lymph nodes, and spleen of NHPs by 5 days postinfection compared to pre-infection levels, indicating early local inflammation. The comparison of CT and PET data from previous COVID-19 treatments or vaccines we tested in NHP, to this large cohort of untreated animals demonstrated the value of in vivo imaging in preclinical trials
    corecore