29 research outputs found

    EARLY STAGES OF LIGNITE FORMATION IN PTOLEMAIS BASIN: A COAL-PETROGRAPHIC APPROACH

    Get PDF
    With the present study it is intended to assess the depositional palaeoenvironment of the lower part of the Lignite-bearing Sequence in the Ptolemais Basin, and more specifically in the areas of Notio-Field and Tomeas-6 open pits. The sediments under study represent the seam between the Volcanic Tephra Layer and the Basal Marl, which constitute the roof and the floor, respectively. Coal-petrographic results showed that Huminite is the main macerai group (84-96%), while macérais from Liptinite and Inertinite groups display low values (<10%). In bulk lignite samples the main mineral phases are quartz, calcite, clay minerals and feldspars, while in the ashes the main phases are quartz, anhydrite and lime. The palaeoenvironment of the lignite formation was reconstructed using the lithological, coalpetrographic and mineralogical data, as well as coal-facies diagrammes. In Notio-Field Mine, at the early stages of lignite formation the conditions used to be limnotelmatic, while in Tomeas-6 Mine they were telmatic. Upwards the conditions turned to more telmatic in both mine areas. The vegetation was mainly herbaceous with some arboreal elements occurring mostly in Tomeas-6 area. The water influx was generally intense resulting in enhanced inorganic inpu

    Staphylococcus aureus forms spreading dendrites that have characteristics of active motility

    Get PDF
    Staphylococcus aureus is historically regarded as a non-motile organism. More recently it has been shown that S. aureus can passively move across agar surfaces in a process called spreading. We re-analysed spreading motility using a modified assay and fo- cused on observing the formation of dendrites: branching structures that emerge from the central colony. We discovered that S. aureus can spread across the surface of media in struc- tures that we term ‘comets’, which advance outwards and precede the formation of dendrites. We observed comets in a diverse selection of S. aureus isolates and they exhibit the following behaviours: (1) They consist of phenotypically distinct cores of cells that move forward and seed other S. aureus cells behind them forming a comet ‘tail’; (2) they move when other cells in the comet tail have stopped moving; (3) the comet core is held together by a matrix of slime; and (4) the comets etch trails in the agar as they move forwards. Comets are not con- sistent with spreading motility or other forms of passive motility. Comet behaviour does share many similarities with a form of active motility known as gliding. Our observations therefore suggest that S. aureus is actively motile under certain conditions

    Antimicrobial effects of fruit and flower anthocyanins

    Get PDF
    • Our research suggest that anthocyanins are promising anti-bacterial agents • The antimicrobial effects are highly dependent on the source of the anthocyanin-extract • Rose-anthocyanins appear to posses the strongest anti-bacterial effects • Gram-positive strains appear to be more sensitive compared to gram-negative strains • Future research efforts should focus on different anthocyanin entitie

    Defining motility in the Staphylococci

    Get PDF
    The ability of bacteria to move is critical for their survival in diverse environments and multiple ways have evolved to achieve this. Two forms of motility have recently been described for Staphylococcus aureus, an organism previously considered to be non-motile. One form is called spreading, which is a type of sliding motility and the second form involves comet formation, which has many observable characteristics associated with gliding motility. Darting motility has also been observed in Staphylococcus epidermidis. This review describes how motility is defined and how we distinguish between passive and active motility. We discuss the characteristics of the various forms of Staphylococci motility, the molecular mechanisms involved and the potential future research directions

    Functional Amyloids Composed of Phenol Soluble Modulins Stabilize Staphylococcus aureus Biofilms

    Get PDF
    Staphylococcus aureus is an opportunistic pathogen that colonizes the skin and mucosal surfaces of mammals. Persistent staphylococcal infections often involve surface-associated communities called biofilms. Here we report the discovery of a novel extracellular fibril structure that promotes S. aureus biofilm integrity. Biochemical and genetic analysis has revealed that these fibers have amyloid-like properties and consist of small peptides called phenol soluble modulins (PSMs). Mutants unable to produce PSMs were susceptible to biofilm disassembly by matrix degrading enzymes and mechanical stress. Previous work has associated PSMs with biofilm disassembly, and we present data showing that soluble PSM peptides disperse biofilms while polymerized peptides do not. This work suggests the PSMs' aggregation into amyloid fibers modulates their biological activity and role in biofilms

    Antimicrobial effects of fruit and flower anthocyanins

    No full text
    • Our research suggest that anthocyanins are promising anti-bacterial agents • The antimicrobial effects are highly dependent on the source of the anthocyanin-extract • Rose-anthocyanins appear to posses the strongest anti-bacterial effects • Gram-positive strains appear to be more sensitive compared to gram-negative strains • Future research efforts should focus on different anthocyanin entitie

    Real-time <em>in vivo </em>imaging of invasive- and biomaterial-associated bacterial infections using fluorescently labelled vancomycin.

    No full text
    Invasive and biomaterial-associated infections in humans are often difficult to diagnose and treat. Here, guided by recent advances in clinically relevant optical imaging technologies, we explore the use of fluorescently labelled vancomycin (vanco-800CW) to specifically target and detect infections caused by Gram-positive bacteria. The application potential of vanco-800CW for real-time in vivo imaging of bacterial infections is assessed in a mouse myositis model and a human post-mortem implant model. We show that vanco-800CW can specifically detect Gram-positive bacterial infections in our mouse myositis model, discriminate bacterial infections from sterile inflammation in vivo and detect biomaterial-associated infections in the lower leg of a human cadaver. We conclude that vanco-800CW has a high potential for enhanced non-invasive diagnosis of infections with Gram-positive bacteria and is a promising candidate for early-phase clinical trials
    corecore