58 research outputs found

    An improved algorithm for learning long-term dependency problems in adaptive processing of data structures

    Get PDF
    2003-2004 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe

    Twist and Degrade-Impact of Molecular Structure on the Photostability of Nonfullerene Acceptors and Their Photovoltaic Blends

    Get PDF
    Nonfullerene acceptors (NFAs) dominate organic photovoltaic (OPV) research due to their promising efficiencies and stabilities. However, there is very little investigation into the molecular processes of degradation, which is critical to guiding design of novel NFAs for long‐lived, commercially viable OPVs. Here, the important role of molecular structure and conformation in NFA photostability in air is investigated by comparing structurally similar but conformationally different promising NFAs: planar O‐IDTBR and nonplanar O‐IDFBR. A three‐phase degradation process is identified: i) initial photoinduced conformational change (i.e., torsion about the core–benzothiadiazole dihedral), induced by noncovalent interactions with environmental molecules, ii) followed by photo‐oxidation and fragmentation, leading to chromophore bleaching and degradation product formation, and iii) finally complete chromophore bleaching. Initial conformational change is a critical prerequisite for further degradation, providing fundamental understanding of the relative stability of IDTBR and IDFBR, where the already twisted IDFBR is more prone to degradation. When blended with the donor polymer poly(3‐hexylthiophene), both NFAs exhibit improved photostability while the photostability of the polymer itself is significantly reduced by the more miscible twisted NFA. The findings elucidate the important role of NFA molecular structure in photostability of OPV systems, and provide vital insights into molecular design rules for intrinsically photostable NFAs

    Multiphoton Absorption Stimulated Metal Chalcogenide Quantum Dot Solar Cells under Ambient and Concentrated Irradiance

    Get PDF
    Colloidal metal chalcogenide quantum dots (QDs) have excellent quantum efficiency in light–matter interactions and good device stability. However, QDs have been brought to the forefront as viable building blocks in bottom‐up assembling semiconductor devices, the development of QD solar cell (QDSC) is still confronting considerable challenges compared to other QD technologies due to their low performance under natural sunlight, as a consequence of untapped potential from their quantized density‐of‐state and inorganic natures. This report is designed to address this long‐standing challenge by accessing the feasibility of using QDSC for indoor and concentration PV (CPV) applications. This work finds that above bandgap photon energy irradiation of QD solids can generate high densities of excitons via multi‐photon absorption (MPA), and these excitons are not limited to diffuse by Auger recombination up to 1.5 × 1019 cm−3 densities. Based on these findings, a 19.5% (2000 lux indoor light) and an 11.6% efficiency (1.5 Suns) have been facilely realized from ordinary QDSCs (9.55% under 1 Sun). To further illustrate the potential of the MPA in QDSCs, 21.29% efficiency polymer lens CPVs (4.08 Suns) and viable sensor networks powered by indoor QDSCs matrix have been demonstrated

    Fluorine doped tin oxide as an alternative of indium tin oxide for bottom electrode of semi-transparent organic photovoltaic devices

    Get PDF
    Indium tin oxide (ITO) is commonly used as the transparent bottom electrode for organic solar cells. However, it is known that the cost of the ITO is quite high due to the indium element, and in some studies ITO coated glass substrate is found to be the most expensive component of device fabrication. Moreover, indium migration from ITO can cause stability issues in organic solar cells. Nevertheless, the use of ITO as the bottom electrode is still dominating in the field. Here, we explore the possibility of using fluorine doped tin oxide (FTO) as an alternative to ITO for the bottom electrode of organic solar cells particularly on semi-transparent cells. We present side-by-side comparisons on their optical, morphological and device properties and suggest that FTO could be more suitable than ITO as the bottom electrode for glass substrate based organic photovoltaic devices

    Non-fullerene acceptor photostability and its impact on organic solar cell lifetime

    Get PDF
    The development of non-fullerene acceptors (NFAs) has facilitated the realization of efficient organic solar cells (OSCs) with minimal burn-in losses and excellent long-term stability. However, the role of NFA molecular structures on device stability remains unclear, limiting commercialization of NFA-based OSCs. Herein, the photostability of 10 OSC devices, fabricated with various NFAs (O-IDTBR, EH-IDTBR, ITIC, and ITIC-M) blended with donor polymers (PTB7-Th, PffBT4T-2OD, and PBDB-T), is investigated. O-IDTBR and EH-IDTBR form highly stable devices with all three polymers, whereas ITIC and ITIC-M devices suffer from burn-in losses and long-term degradation. Conformational instability is found to be responsible for the poor photostability of ITIC and ITIC-M, resulting in poor device stability. Twisting and potential breakage of the chemical bond that links the end group to the main backbone of ITIC and ITIC-M molecules causes undesirable conformational changes. Potential strategies to overcome such detrimental photo-induced conformational changes in NFAs are proposed

    P3HT-Based Solar Cells: Structural Properties and Photovoltaic Performance

    Full text link
    Each year we are bombarded with B.Sc. and Ph.D. applications from students that want to improve the world. They have learned that their future depends on changing the type of fuel we use and that solar energy is our future. The hope and energy of these young people will transform future energy technologies, but it will not happen quickly. Organic photovoltaic devices are easy to sketch, but the materials, processing steps, and ways of measuring the properties of the materials are very complicated. It is not trivial to make a systematic measurement that will change the way other research groups think or practice. In approaching this chapter, we thought about what a new researcher would need to know about organic photovoltaic devices and materials in order to have a good start in the subject. Then, we simplified that to focus on what a new researcher would need to know about poly-3-hexylthiophene:phenyl-C61-butyric acid methyl ester blends (P3HT: PCBM) to make research progress with these materials. This chapter is by no means authoritative or a compendium of all things on P3HT:PCBM. We have selected to explain how the sample fabrication techniques lead to control of morphology and structural features and how these morphological features have specific optical and electronic consequences for organic photovoltaic device applications

    Perspectives on the mesenchymal origin of metastatic cancer

    Full text link

    Mandarin-English speaking bilingual and Mandarin speaking monolingual children's comprehension of relative clauses

    No full text
    202012 bcrcVersion of RecordPublishe

    Is organic photovoltaics promising for indoor applications?

    No full text
    This work utilizes organic photovoltaics (OPV) for indoor applications, such as powering small electronic devices or wireless connected Internet of Things. Three representative polymer-based OPV systems, namely, poly(3-hexylthiophene-2,5-diyl), poly[N-9′-heptadecanyl-2,7-carbazole-alt-5,5-(4′,7′-di-2-thienyl-2′,1′,3′-benzothiadiazole)], and poly[[4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b′]dithiophene-2,6-diyl][3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophenediyl]], were selected as the donor materials in blend with fullerene derivatives for comparison under low light level condition using fluorescent lamps. PCDTBT based devices are found to be the best performing system, generating 13.9 μW/cm2 corresponding to 16.6% power conversion efficiency at 300 lx, although PTB7 based devices show the highest efficiency under one sun conditions. This high performance suggests that OPV is competitive to the other PV technologies under low light condition despite much lower performance under one sun condition. Different properties of these devices are studied to explain the competitive performance at low light level. A low energy consuming method for maximum power point tracking is introduced for the operation of the OPV devices. Finally, a 14 cm × 14 cm OPV module with 100 cm2 active area is demonstrated for real applications. These findings suggest that OPV, in particular, PCDTBT based devices, could be a promising candidate for indoor applications
    corecore