12 research outputs found

    Complexity reduction in parametric flow problems via Nonintrusive Proper Generalised Decomposition in OpenFOAM

    Get PDF
    The present thesis explores the viability of the proper generalised decomposition (PGD) as a tool for parametric studies in a daily industrial environment. Starting from the equations modelling incompressible flows, the separated formulation of the equations, the development of a parametric solver, the implementation in a commercial computational fluid dynamics (CFD) software, OpenFOAM, and a numerical validation are presented. The parametrised Stokes and Oseen flows are used as an initial step to test the applicability of the PGD to flow problems. The rationale for the construc- tion of a separable approximation is described and implemented in OpenFOAM. For the numerical validation of the developed strategy analytical test cases are solved. Then, the parametrised steady laminar incompressible Navier-Stokes equations are considered. The nonintrusive implementation of PGD in OpenFOAM is formulated, focusing on the seamless integration of a reduced order model (ROM) in the framework of an industrially validated CFD software. The proposed strategy exploits classical solution strategies in OpenFOAM to solve the PGD spatial iteration, while the parametric one is solved via a collocation approach. Such nonintrusiveness represents an important step towards the industrialisation of PGD-based approaches. The capabilities of the methodology are tested by applying it to benchmark tests in the literature and solving a parametrised flow control problem in a realistic geometry of interest for the automotive industry. Finally, the PGD framework is extended to turbulent Navier-Stokes problems. The separable form of an industrially popular turbulence model, namely Spalart-Allmaras model, is formulated and a PGD strategy for the construction of a parametric turbulent eddy viscosity is devised. Different im- plementation possibilities in the nonintrusive PGD for parametrised Navier- Stokes equations are explored and the proposed strategy is applied to well-documented turbulent flow control benchmark cases in both two and three dimensions.La tesis explora la viabilidad del método de reducción de modelos Proper Generalised Decomposition (PGD) como herramienta habitual en un entorno industrial para obtener soluciones de problemas de flujo viscoso incompresible que dependan de parámetros. En este documento, partiendo de las ecuaciones que modelan el flujo viscoso e incompresible, se describe en detalle la formulación en forma separada, espacio-parámetros, de las ecuaciones para el método PGD, se desarrolla el algoritmo de resolución teniendo en cuenta los parámetros, se detalla como realizar la implementación en OpenFOAM, que es un software comercial de dinámica de fluidos computacional (CFD por sus siglas en inglés) y se discuten las validaciones numéricas correspondientes. Como paso previo para probar la viabilidad de la PGD a problemas de interés, se estudian flujos de Stokes y Oseen con datos parametrizados. De esta forma, se desarrollan las bases para la construcción de una aproximación separada, espacio-parámetros, de la solución numérica velocidad-presión, todo ello implementado en OpenFOAM. Para estas formulaciones se valida la aproximación numérica de la estrategia desarrollada con ejemplos cuya solución analítica es conocida, lo que permite analizar los errores cometidos, y se presentan ejemplos numéricos de referencia ampliamente estudiados en la literatura para mostrar su viabilidad. Seguidamente se consideran las ecuaciones de Navier-Stokes para flujo incompresible, estacionario y laminar de nuevo dependiendo de parámetros de diseño. La implementación no intrusiva de la PGD en OpenFOAM está formulada para obtener integración perfecta de un modelo de orden reducido (ROM por sus siglas en inglés) con un software CFD validado industrialmente. La metodología propuesta explota las estrategias de solución clásicas ya existentes en OpenFOAM para resolver la iteración espacial de la PGD, mientras que la iteración de las funciones que dependen de los parámetros se realiza de forma externa a OpenFOAM (empleando formulaciones basadas en la colocación puntual). La no-intrusividad es crítica para una cualquier estrategia que pretenda emplear la formulación PGD en la práctica diaria de la producción y diseño industrial. Para justificar la metodología propuesta así como su viabilidad, se muestra la solución de problemas de referencia clásicos y habituales en la literatura así como la resolución de un problema de control de flujo parametrizado en una geometría realista de interés para la industria de la automoción. Finalmente, es importante resaltar que se extiende a flujos turbulentos la metodología propuesta para trabajar con la PGD de manera no-intrusiva. Más concretamente, las ecuaciones de Navier-Stokes se complementan con un modelo de turbulencia habitual en aplicaciones industriales: el modelo de Spalart-Allmaras. En este caso, se propone una extensión de la estructura separada de las aproximaciones (velocidad y presión), y se diseña una estrategia PGD para la construcción de una viscosidad turbulenta paramétrica. Se exploran diferentes posibilidades de implementación de la PGD no intrusiva para las ecuaciones de Navier-Stokes para flujo turbulento y dependiendo de parámetros. La estrategia propuesta se aplica a casos de referencia de control de flujo turbulento bien documentados en dos y tres dimensiones

    Complexity reduction in parametric flow problems via Nonintrusive Proper Generalised Decomposition in OpenFOAM

    Get PDF
    Tesi en modalitat cotutela: Universitat Politècnica de Catalunya i Swansea University. Programa Erasmus Mundus en Simulació en Enginyeria i Desenvolupament de l'Emprenedoria (SEED)The present thesis explores the viability of the proper generalised decomposition (PGD) as a tool for parametric studies in a daily industrial environment. Starting from the equations modelling incompressible flows, the separated formulation of the equations, the development of a parametric solver, the implementation in a commercial computational fluid dynamics (CFD) software, OpenFOAM, and a numerical validation are presented. The parametrised Stokes and Oseen flows are used as an initial step to test the applicability of the PGD to flow problems. The rationale for the construction of a separable approximation is described and implemented in OpenFOAM. For the numerical validation of the developed strategy analytical test cases are solved. Then, the parametrised steady laminar incompressible Navier-Stokes equations are considered. The nonintrusive implementation of PGD in OpenFOAM is formulated, focusing on the seamless integration of a reduced order model (ROM) in the framework of an industrially validated CFD software. The proposed strategy exploits classical solution strategies in OpenFOAM to solve the PGD spatial iteration, while the parametric one is solved via a collocation approach. Such nonintrusiveness represents an important step towards the industrialisation of PGD-based approaches. The capabilities of the methodology are tested by applying it to benchmark tests in the literature and solving a parametrised flow control problem in a realistic geometry of interest for the automotive industry. Finally, the PGD framework is extended to turbulent Navier-Stokes problems. The separable form of an industrially popular turbulence model, namely Spalart-Allmaras model, is formulated and a PGD strategy for the construction of a parametric turbulent eddy viscosity is devised. Different implementation possibilities in the nonintrusive PGD for parametrised Navier-Stokes equations are explored and the proposed strategy is applied to well-documented turbulent flow control benchmark cases in both two and three dimensions.La tesis explora la viabilidad del método de reducción de modelos Proper Generalised Decomposition (PGD) como herramienta habitual en un entorno industrial para obtener soluciones de problemas de flujo viscoso incompresible que dependan de parámetros. En este documento, partiendo de las ecuaciones que modelan el flujo viscoso e incompresible, se describe en detalle la formulación en forma separada, espacio-parámetros, de las ecuaciones para el método PGD, se desarrolla el algoritmo de resolución teniendo en cuenta los parámetros, se detalla como realizar la implementación en OpenFOAM, que es un software comercial de dinámica de fluidos computacional (CFD por sus siglas en inglés) y se discuten las validaciones numéricas correspondientes. Como paso previo para probar la viabilidad de la PGD a problemas de interés, se estudian flujos de Stokes y Oseen con datos parametrizados. De esta forma, se desarrollan las bases para la construcción de una aproximación separada, espacio-parámetros, de la solución numérica velocidad-presión, todo ello implementado en OpenFOAM. Para estas formulaciones se valida la aproximación numérica de la estrategia desarrollada con ejemplos cuya solución analítica es conocida, lo que permite analizar los errores cometidos, y se presentan ejemplos numéricos de referencia ampliamente estudiados en la literatura para mostrar su viabilidad. Seguidamente se consideran las ecuaciones de Navier-Stokes para flujo incompresible, estacionario y laminar de nuevo dependiendo de parámetros de diseño. La implementación no intrusiva de la PGD en OpenFOAM está formulada para obtener integración perfecta de un modelo de orden reducido (ROM por sus siglas en inglés) con un software CFD validado industrialmente. La metodología propuesta explota las estrategias de solución clásicas ya existentes en OpenFOAM para resolver la iteración espacial de la PGD, mientras que la iteración de las funciones que dependen de los parámetros se realiza de forma externa a OpenFOAM (empleando formulaciones basadas en la colocación puntual). La no-intrusividad es crítica para una cualquier estrategia que pretenda emplear la formulación PGD en la práctica diaria de la producción y diseño industrial. Para justificar la metodología propuesta así como su viabilidad, se muestra la solución de problemas de referencia clásicos y habituales en la literatura así como la resolución de un problema de control de flujo parametrizado en una geometría realista de interés para la industria de la automoción. Finalmente, es importante resaltar que se extiende a flujos turbulentos la metodología propuesta para trabajar con la PGD de manera no-intrusiva. Más concretamente, las ecuaciones de Navier-Stokes se complementan con un modelo de turbulencia habitual en aplicaciones industriales: el modelo de Spalart-Allmaras. En este caso, se propone una extensión de la estructura separada de las aproximaciones (velocidad y presión), y se diseña una estrategia PGD para la construcción de una viscosidad turbulenta paramétrica. Se exploran diferentes posibilidades de implementación de la PGD no intrusiva para las ecuaciones de Navier-Stokes para flujo turbulento y dependiendo de parámetros. La estrategia propuesta se aplica a casos de referencia de control de flujo turbulento bien documentados en dos y tres dimensiones.Postprint (published version

    Nonintrusive proper generalised decomposition for parametrised incompressible flow problems in OpenFOAM

    Get PDF
    The computational cost of parametric studies currently represents the major limitation to the application of simulation-based engineering techniques in a daily industrial environment. This work presents the first nonintrusive implementation of the proper generalised decomposition (PGD) in OpenFOAM, for the approximation of parametrised laminar incompressible Navier–Stokes equations. The key feature of this approach is the seamless integration of a reduced order model (ROM) in the framework of an industrially validated computational fluid dynamics software. This is of special importance in an industrial environment because in the online phase of the PGD ROM the description of the flow for a specific set of parameters is obtained simply via interpolation of the generalised solution, without the need of any extra solution step. On the one hand, the spatial problems arising from the PGD separation of the unknowns are treated using the classical solution strategies of OpenFOAM, namely the semi-implicit method for pressure linked equations (SIMPLE) algorithm. On the other hand, the parametric iteration is solved via a collocation approach. The resulting ROM is applied to several benchmark tests of laminar incompressible Navier–Stokes flows, in two and three dimensions, with different parameters affecting the flow features. Eventually, the capability of the proposed strategy to treat industrial problems is verified by applying the methodology to a parametrised flow control in a realistic geometry of interest for the automotive industry

    Hybrid deep-learning POD-based parametric reduced order model for flow around wind-turbine blade

    Get PDF
    In this study, we present a parametric, non-intrusive reduced order modeling (NIROM) framework as a potential digital-twin enabler for fluid flow around an aerofoil. A wind turbine blade has its basic foundation in the aerofoil shape. A faster way of understanding dynamic flow changes around the aerofoil-shaped blade can help make quick decisions related to wind-turbine operations and lead to optimal aerodynamic performance and power production. In this direction, a case study involving the application of the NIROM methodology for flow prediction around a NACA 0015 aerofoil is considered. The Reynolds number (Re) is the varying parameter, ranging from 320 000 to 1.12 million and high-fidelity CFD simulations are performed to generate the database for developing the NIROM. The aforementioned NIROM framework employs a Grassmann manifold interpolation approach (GI) for obtaining basis functions corresponding to new values of the parameter (Reynolds number), and exploits the time series prediction capabilities of the long short-term memory (LSTM) recurrent neural network for obtaining temporal coefficients associated with the new basis functions. The methodology involves: (a) an offline training phase, where the LSTM model is trained on the modal coefficients extracted from the sampled high-resolution data using the proper orthogonal decomposition (POD), and (b) an online testing phase, where for the new parameter value, the corresponding flow field is obtained using the GI-modulated basis functions for new parameter and the LSTM-predicted temporal coefficients. The NIROM-approximated flow predictions at new parameters have been compared to the high-dimensional full-order model (FOM) solutions for the high-Re aerofoil case and for a low-Re number wake vortex merger case in order to put the performance of NIROM in perspective. The results indicate that the NIROM framework can qualitatively predict the complex flow scenario around the aerofoil for new values of Reynolds number, while it has quantitatively shown that the LSTM predictions improve with the enrichment of the training space. For the low-Re vortex merger case, NIROM works very well. Thus, it can be deduced that there is scope and potential for continued research in NIROMs as digital twin enablers in wind energy applications.publishedVersio

    Complexity reduction in parametric flow problems via Nonintrusive Proper Generalised Decomposition in OpenFOAM

    No full text
    The present thesis explores the viability of the proper generalised decomposition (PGD) as a tool for parametric studies in a daily industrial environment. Starting from the equations modelling incompressible flows, the separated formulation of the equations, the development of a parametric solver, the implementation in a commercial computational fluid dynamics (CFD) software, OpenFOAM, and a numerical validation are presented. The parametrised Stokes and Oseen flows are used as an initial step to test the applicability of the PGD to flow problems. The rationale for the construc- tion of a separable approximation is described and implemented in OpenFOAM. For the numerical validation of the developed strategy analytical test cases are solved. Then, the parametrised steady laminar incompressible Navier-Stokes equations are considered. The nonintrusive implementation of PGD in OpenFOAM is formulated, focusing on the seamless integration of a reduced order model (ROM) in the framework of an industrially validated CFD software. The proposed strategy exploits classical solution strategies in OpenFOAM to solve the PGD spatial iteration, while the parametric one is solved via a collocation approach. Such nonintrusiveness represents an important step towards the industrialisation of PGD-based approaches. The capabilities of the methodology are tested by applying it to benchmark tests in the literature and solving a parametrised flow control problem in a realistic geometry of interest for the automotive industry. Finally, the PGD framework is extended to turbulent Navier-Stokes problems. The separable form of an industrially popular turbulence model, namely Spalart-Allmaras model, is formulated and a PGD strategy for the construction of a parametric turbulent eddy viscosity is devised. Different im- plementation possibilities in the nonintrusive PGD for parametrised Navier- Stokes equations are explored and the proposed strategy is applied to well-documented turbulent flow control benchmark cases in both two and three dimensions.La tesis explora la viabilidad del método de reducción de modelos Proper Generalised Decomposition (PGD) como herramienta habitual en un entorno industrial para obtener soluciones de problemas de flujo viscoso incompresible que dependan de parámetros. En este documento, partiendo de las ecuaciones que modelan el flujo viscoso e incompresible, se describe en detalle la formulación en forma separada, espacio-parámetros, de las ecuaciones para el método PGD, se desarrolla el algoritmo de resolución teniendo en cuenta los parámetros, se detalla como realizar la implementación en OpenFOAM, que es un software comercial de dinámica de fluidos computacional (CFD por sus siglas en inglés) y se discuten las validaciones numéricas correspondientes. Como paso previo para probar la viabilidad de la PGD a problemas de interés, se estudian flujos de Stokes y Oseen con datos parametrizados. De esta forma, se desarrollan las bases para la construcción de una aproximación separada, espacio-parámetros, de la solución numérica velocidad-presión, todo ello implementado en OpenFOAM. Para estas formulaciones se valida la aproximación numérica de la estrategia desarrollada con ejemplos cuya solución analítica es conocida, lo que permite analizar los errores cometidos, y se presentan ejemplos numéricos de referencia ampliamente estudiados en la literatura para mostrar su viabilidad. Seguidamente se consideran las ecuaciones de Navier-Stokes para flujo incompresible, estacionario y laminar de nuevo dependiendo de parámetros de diseño. La implementación no intrusiva de la PGD en OpenFOAM está formulada para obtener integración perfecta de un modelo de orden reducido (ROM por sus siglas en inglés) con un software CFD validado industrialmente. La metodología propuesta explota las estrategias de solución clásicas ya existentes en OpenFOAM para resolver la iteración espacial de la PGD, mientras que la iteración de las funciones que dependen de los parámetros se realiza de forma externa a OpenFOAM (empleando formulaciones basadas en la colocación puntual). La no-intrusividad es crítica para una cualquier estrategia que pretenda emplear la formulación PGD en la práctica diaria de la producción y diseño industrial. Para justificar la metodología propuesta así como su viabilidad, se muestra la solución de problemas de referencia clásicos y habituales en la literatura así como la resolución de un problema de control de flujo parametrizado en una geometría realista de interés para la industria de la automoción. Finalmente, es importante resaltar que se extiende a flujos turbulentos la metodología propuesta para trabajar con la PGD de manera no-intrusiva. Más concretamente, las ecuaciones de Navier-Stokes se complementan con un modelo de turbulencia habitual en aplicaciones industriales: el modelo de Spalart-Allmaras. En este caso, se propone una extensión de la estructura separada de las aproximaciones (velocidad y presión), y se diseña una estrategia PGD para la construcción de una viscosidad turbulenta paramétrica. Se exploran diferentes posibilidades de implementación de la PGD no intrusiva para las ecuaciones de Navier-Stokes para flujo turbulento y dependiendo de parámetros. La estrategia propuesta se aplica a casos de referencia de control de flujo turbulento bien documentados en dos y tres dimensiones

    Complexity reduction in parametric flow problems via Nonintrusive Proper Generalised Decomposition in OpenFOAM

    No full text
    Tesi en modalitat cotutela: Universitat Politècnica de Catalunya i Swansea University. Programa Erasmus Mundus en Simulació en Enginyeria i Desenvolupament de l'Emprenedoria (SEED)The present thesis explores the viability of the proper generalised decomposition (PGD) as a tool for parametric studies in a daily industrial environment. Starting from the equations modelling incompressible flows, the separated formulation of the equations, the development of a parametric solver, the implementation in a commercial computational fluid dynamics (CFD) software, OpenFOAM, and a numerical validation are presented. The parametrised Stokes and Oseen flows are used as an initial step to test the applicability of the PGD to flow problems. The rationale for the construc- tion of a separable approximation is described and implemented in OpenFOAM. For the numerical validation of the developed strategy analytical test cases are solved. Then, the parametrised steady laminar incompressible Navier-Stokes equations are considered. The nonintrusive implementation of PGD in OpenFOAM is formulated, focusing on the seamless integration of a reduced order model (ROM) in the framework of an industrially validated CFD software. The proposed strategy exploits classical solution strategies in OpenFOAM to solve the PGD spatial iteration, while the parametric one is solved via a collocation approach. Such nonintrusiveness represents an important step towards the industrialisation of PGD-based approaches. The capabilities of the methodology are tested by applying it to benchmark tests in the literature and solving a parametrised flow control problem in a realistic geometry of interest for the automotive industry. Finally, the PGD framework is extended to turbulent Navier-Stokes problems. The separable form of an industrially popular turbulence model, namely Spalart-Allmaras model, is formulated and a PGD strategy for the construction of a parametric turbulent eddy viscosity is devised. Different im- plementation possibilities in the nonintrusive PGD for parametrised Navier- Stokes equations are explored and the proposed strategy is applied to well-documented turbulent flow control benchmark cases in both two and three dimensions.La tesis explora la viabilidad del método de reducción de modelos Proper Generalised Decomposition (PGD) como herramienta habitual en un entorno industrial para obtener soluciones de problemas de flujo viscoso incompresible que dependan de parámetros. En este documento, partiendo de las ecuaciones que modelan el flujo viscoso e incompresible, se describe en detalle la formulación en forma separada, espacio-parámetros, de las ecuaciones para el método PGD, se desarrolla el algoritmo de resolución teniendo en cuenta los parámetros, se detalla como realizar la implementación en OpenFOAM, que es un software comercial de dinámica de fluidos computacional (CFD por sus siglas en inglés) y se discuten las validaciones numéricas correspondientes. Como paso previo para probar la viabilidad de la PGD a problemas de interés, se estudian flujos de Stokes y Oseen con datos parametrizados. De esta forma, se desarrollan las bases para la construcción de una aproximación separada, espacio-parámetros, de la solución numérica velocidad-presión, todo ello implementado en OpenFOAM. Para estas formulaciones se valida la aproximación numérica de la estrategia desarrollada con ejemplos cuya solución analítica es conocida, lo que permite analizar los errores cometidos, y se presentan ejemplos numéricos de referencia ampliamente estudiados en la literatura para mostrar su viabilidad. Seguidamente se consideran las ecuaciones de Navier-Stokes para flujo incompresible, estacionario y laminar de nuevo dependiendo de parámetros de diseño. La implementación no intrusiva de la PGD en OpenFOAM está formulada para obtener integración perfecta de un modelo de orden reducido (ROM por sus siglas en inglés) con un software CFD validado industrialmente. La metodología propuesta explota las estrategias de solución clásicas ya existentes en OpenFOAM para resolver la iteración espacial de la PGD, mientras que la iteración de las funciones que dependen de los parámetros se realiza de forma externa a OpenFOAM (empleando formulaciones basadas en la colocación puntual). La no-intrusividad es crítica para una cualquier estrategia que pretenda emplear la formulación PGD en la práctica diaria de la producción y diseño industrial. Para justificar la metodología propuesta así como su viabilidad, se muestra la solución de problemas de referencia clásicos y habituales en la literatura así como la resolución de un problema de control de flujo parametrizado en una geometría realista de interés para la industria de la automoción. Finalmente, es importante resaltar que se extiende a flujos turbulentos la metodología propuesta para trabajar con la PGD de manera no-intrusiva. Más concretamente, las ecuaciones de Navier-Stokes se complementan con un modelo de turbulencia habitual en aplicaciones industriales: el modelo de Spalart-Allmaras. En este caso, se propone una extensión de la estructura separada de las aproximaciones (velocidad y presión), y se diseña una estrategia PGD para la construcción de una viscosidad turbulenta paramétrica. Se exploran diferentes posibilidades de implementación de la PGD no intrusiva para las ecuaciones de Navier-Stokes para flujo turbulento y dependiendo de parámetros. La estrategia propuesta se aplica a casos de referencia de control de flujo turbulento bien documentados en dos y tres dimensiones

    Nonintrusive proper generalised decomposition for parametrised incompressible flow problems in OpenFOAM

    No full text
    The computational cost of parametric studies currently represents the major limitation to the application of simulation-based engineering techniques in a daily industrial environment. This work presents the first nonintrusive implementation of the proper generalised decomposition (PGD) in OpenFOAM, for the approximation of parametrised laminar incompressible Navier–Stokes equations. The key feature of this approach is the seamless integration of a reduced order model (ROM) in the framework of an industrially validated computational fluid dynamics software. This is of special importance in an industrial environment because in the online phase of the PGD ROM the description of the flow for a specific set of parameters is obtained simply via interpolation of the generalised solution, without the need of any extra solution step. On the one hand, the spatial problems arising from the PGD separation of the unknowns are treated using the classical solution strategies of OpenFOAM, namely the semi-implicit method for pressure linked equations (SIMPLE) algorithm. On the other hand, the parametric iteration is solved via a collocation approach. The resulting ROM is applied to several benchmark tests of laminar incompressible Navier–Stokes flows, in two and three dimensions, with different parameters affecting the flow features. Eventually, the capability of the proposed strategy to treat industrial problems is verified by applying the methodology to a parametrised flow control in a realistic geometry of interest for the automotive industry.Peer Reviewe

    Reduced order models for finite-volume simulations of turbulent flow around wind-turbine blades

    Get PDF
    The computational cost of the design optimisation of wind turbines, as well as the optimisation of the operation and maintenance of offshore wind farms represents a limitation to the application of conventional simulation methods. New techniques such as reduced order modelling (ROM) and technologies such as hybrid-analysis methods and digital twins have increased in popularity due to their ability to deliver numerical results at a significant speed-up with reasonable accuracy. This work presents a hybrid projection-based proper orthogonal decomposition (POD) strategy applied to transient turbulent flow problems. Key feature of this work is the applicability of the methodology to high Reynolds number cases and the stabilisation of pressure in the online phase via the assembly of the so-called pressure Poisson equation. Another significant part of this work is the implementation of an interpolation scheme for the eddy viscosity field in the classical POD-Galerkin strategy. The sampling procedure and the calculation of the reduced operators in the offline phase is carried out using the finite volume method (FVM), OpenFOAM's libraries specifically, while the construction of the reduced basis and the solution of the online phase is carried out in Python. The capability of the resulting ROM is tested using the two-dimensional flow around a NACA0015 airfoil at 17° angle of attack with Reynolds number of approximately 300 000.publishedVersio
    corecore