189 research outputs found

    Dietary fat oxidation is elevated in middle-aged type 2 diabetes

    Get PDF
    This is the author accepted manuscript. The final version is available from the publisher via the link in this record.N/

    Exercise metabolism in non-obese patients with type 2 diabetes following the acute restoration of normoglycaemia

    Get PDF
    This study investigated how acute restoration of normoglycaemia affected energy metabolism during exercise in nonobese patients with type 2 diabetes. Six subjects (mean ± SEM) aged 56.2 ± 2.7 years, with a BMI of 24.5 ± 1.5 kg/m2 and a VO2 peak of 28.7 ml/kg/min, attended the lab on two randomised occasions for a four-hour resting infusion of insulin or saline, followed by 30 minutes cycling at 50% VO2 peak. During the 4 h resting infusion, there was a greater (P < 0 0001) reduction in blood glucose in insulin treatment (INS) (from 11.2 ± 0.6 to 5.6 ± 0.1 mmol/l) than in saline treatment/control (CON) (from 11.5 ± 0.7 to 8.5 ± 0.6 mmol/l). This was associated with a lower (P < 0 05) resting metabolic rate in INS (3.87 ± 0.17) than in CON (4.39 ± 0.30 kJ/min). During subsequent exercise, blood glucose increased significantly in INS from 5.6 ± 0.1 at 0 min to 6.3 ± 0.3 mmol/l at 30 min (P < 0 01), which was accompanied by a lower blood lactate response (P < 0 05). Oxygen uptake, rates of substrate utilization, heart rate, and ratings of perceived exertion were not different between trials. Insulin-induced normoglycaemia increased blood glucose during subsequent exercise without altering overall substrate utilization

    IL-15 promotes human myogenesis and mitigates the detrimental effects of TNFα on myotube development

    Get PDF
    Studies in murine cell lines and in mouse models suggest that IL-15 promotes myogenesis and may protect against the inflammation-mediated skeletal muscle atrophy which occurs in sarcopenia and cachexia. The effects of IL-15 on human skeletal muscle growth and development remain largely uncharacterised. Myogenic cultures were isolated from the skeletal muscle of young and elderly subjects. Myoblasts were differentiated for 8 d, with or without the addition of recombinant cytokines (rIL-15, rTNFα) and an IL-15 receptor neutralising antibody. Although myotubes were 19% thinner in cultures derived from elderly subjects, rIL-15 increased the thickness of myotubes (MTT) from both age groups to a similar extent. Neutralisation of the high-affinity IL-15 receptor binding subunit, IL-15rα in elderly myotubes confirmed that autocrine concentrations of IL-15 also support myogenesis. Co-incubation of differentiating myoblasts with rIL-15 and rTNFα, limited the reduction in MTT and nuclear fusion index (NFI) associated with rTNFα stimulation alone. IL-15rα neutralisation and rTNFα decreased MTT and NFI further. This, coupled with our observation that myotubes secrete IL-15 in response to TNFα stimulation supports the notion that IL-15 serves to mitigate inflammatory skeletal muscle loss. IL-15 may be an effective therapeutic target for the attenuation of inflammation-mediated skeletal muscle atrophy

    Skeletal muscle myostatin mRNA expression is upregulated in aged human adults with excess adiposity, but is not associated with insulin resistance and ageing

    Get PDF
    Myostatin negatively regulates skeletal muscle growth and appears upregulated in human obesity and associated with insulin resistance. However, observations are confounded by ageing, and the mechanisms responsible are unknown. The aim of this study was to delineate between the effects of excess adiposity, insulin resistance and ageing on myostatin mRNA expression in human skeletal muscle and to investigate causative factors using in vitro models. An in vivo cross-sectional analysis of human skeletal muscle was undertaken to isolate effects of excess adiposity and ageing per se on myostatin expression. In vitro studies employed human primary myotubes to investigate the potential involvement of cross-talk between subcutaneous adipose tissue (SAT) and skeletal muscle, and lipid-induced insulin resistance. Skeletal muscle myostatin mRNA expression was greater in aged adults with excess adiposity than age-matched adults with normal adiposity (2.0-fold higher; P < 0.05) and occurred concurrently with altered expression of genes involved in the maintenance of muscle mass but did not differ between younger and aged adults with normal adiposity. Neither chronic exposure to obese SAT secretome nor acute elevation of fatty acid availability (which induced insulin resistance) replicated the obesity-mediated upregulation of myostatin mRNA expression in vitro. In conclusion, skeletal muscle myostatin mRNA expression is uniquely upregulated in aged adults with excess adiposity and insulin resistance but not by ageing alone. This does not appear to be mediated by the SAT secretome or by lipid-induced insulin resistance. Thus, factors intrinsic to skeletal muscle may be responsible for the obesity-mediated upregulation of myostatin, and future work to establish causality is required

    Fish oil omega-3 fatty acids partially prevent lipid-induced insulin resistance in human skeletal muscle without limiting acylcarnitine accumulation

    Get PDF
    This is the author accepted manuscript. The final version is available from Portland Press via the DOI in this record Acylcarnitine accumulation in skeletal muscle and plasma has been observed in numerous models of mitochondrial lipid overload and insulin resistance. Fish oil n3PUFA (omega-3 polyunsaturated fatty acids) are thought to protect against lipid-induced insulin resistance. The present study tested the hypothesis that the addition of n3PUFA to an intravenous lipid emulsion would limit muscle acylcarnitine accumulation and reduce the inhibitory effect of lipid overload on insulin action. On three occasions, six healthy young men underwent a 6-h euglycaemic-hyperinsulinaemic clamp accompanied by intravenous infusion of saline (Control), 10% Intralipid® [n6PUFA (omega-6 polyunsaturated fatty acids)] or 10% Intralipid®+10% Omegaven® (2:1; n3PUFA). The decline in insulin-stimulated whole-body glucose infusion rate, muscle PDCa (pyruvate dehydrogenase complex activation) and glycogen storage associated with n6PUFA compared with Control was prevented with n3PUFA. Muscle acetyl-CoA accumulation was greater following n6PUFA compared with Control and n3PUFA, suggesting that mitochondrial lipid overload was responsible for the lower insulin action observed. Despite these favourable metabolic effects of n3PUFA, accumulation of total muscle acylcarnitine was not attenuated when compared with n6PUFA. These findings demonstrate that n3PUFA exert beneficial effects on insulin-stimulated skeletal muscle glucose storage and oxidation independently of total acylcarnitine accumulation, which does not always reflect mitochondrial lipid overload.This research study was funded by The Royal Society [Grant RG100575]

    Photoperiodic regulation of FGF21 production in the Siberian hamster

    Get PDF
    FGF21 is an endocrine member of the fibroblast growth factor superfamily that has been shown to play an important role in the physiological response to nutrient deprivation. Food restriction enhances hepatic FGF21 production, which serves to engage an integrated response to energy deficit. Specifically, elevated FGF21 levels lead to reduced gluconeogenesis and increased hepatic ketogenesis. However, circulating FGF21 concentrations also paradoxically rise in states of metabolic dysfunction such as obesity. Furthermore, multiple peripheral tissues also produce FGF21 in addition to the liver, raising questions as to its endocrine and paracrine roles in the control of energy metabolism. The objectives of this study were to measure plasma FGF21 concentrations in the Siberian hamster, a rodent which undergoes a seasonal cycle of fattening and body weight gain in the long days (LD) of summer, followed by reduction of appetite and fat catabolism in the short days (SD) of winter. Groups of adult male hamsters were raised in long days, and then exposed to SD for up to 12 weeks. Chronic exposure of LD animals to SD led to a significant increase in circulating FGF21 concentrations. This elevation of circulating FGF21 was preceded by an increase in liver FGF21 protein production evident as early as 4 weeks of exposure to SD. FGF21 protein abundance was also increased significantly in interscapular brown adipose tissue, with a positive correlation between plasma levels of FGF21 and BAT protein abundance throughout the experimental period. Epididymal white adipose tissue and skeletal muscle (gastrocnemius) also produced FGF21, but levels did not change in response to a change in photoperiod. In summary, a natural programmed state of fat catabolism was associated with increased FGF21 production in the liver and BAT, consistent with the view that FGF21 has a role in adapting hamsters to the hypophagic winter state
    corecore