42 research outputs found

    Transcriptomic Adjustments of Staphylococcus aureus COL (MRSA) Forming Biofilms Under Acidic and Alkaline Conditions

    Get PDF
    © Copyright © 2019 Efthimiou, Tsiamis, Typas and Pappas. Methicillin-resistant Staphylococcus aureus (MRSA) strains are important human pathogens and a significant health hazard for hospitals and the food industry. They are resistant to β-lactam antibiotics including methicillin and extremely difficult to treat. In this study, we show that the Staphylococcus aureus COL (MRSA) strain, with a known complete genome, can easily survive and grow under acidic and alkaline conditions (pH5 and pH9, respectively), both planktonically and as a biofilm. A microarray-based analysis of both planktonic and biofilm cells was performed under acidic and alkaline conditions showing that several genes are up- or down-regulated under different environmental conditions and growth modes. These genes were coding for transcription regulators, ion transporters, cell wall biosynthetic enzymes, autolytic enzymes, adhesion proteins and antibiotic resistance factors, most of which are associated with biofilm formation. These results will facilitate a better understanding of the physiological adjustments occurring in biofilm-associated S. aureus COL cells growing in acidic or alkaline environments, which will enable the development of new efficient treatment or disinfection strategies

    New criteria for selecting the origin of DNA replication in Wolbachia and closely related bacteria

    Get PDF
    © 2007 Ioannidis et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The definitive version was published in BMC Genomics 8 (2007): 182, doi:10.1186/1471-2164-8-182.Background: The annotated genomes of two closely related strains of the intracellular bacterium Wolbachia pipientis have been reported without the identifications of the putative origin of replication (ori). Identifying the ori of these bacteria and related alpha-Proteobacteria as well as their patterns of sequence evolution will aid studies of cell replication and cell density, as well as the potential genetic manipulation of these widespread intracellular bacteria. Results: Using features that have been previously experimentally verified in the alpha-Proteobacterium Caulobacter crescentus, the origin of DNA replication (ori) regions were identified in silico for Wolbachia strains and eleven other related bacteria belonging to Ehrlichia, Anaplasma, and Rickettsia genera. These features include DnaA-, CtrA- and IHF-binding sites as well as the flanking genes in C. crescentus. The Wolbachia ori boundary genes were found to be hemE and COG1253 protein (CBS domain protein). Comparisons of the putative ori region among related Wolbachia strains showed higher conservation of bases within binding sites. Conclusion: The sequences of the ori regions described here are only similar among closely related bacteria while fundamental characteristics like presence of DnaA and IHF binding sites as well as the boundary genes are more widely conserved. The relative paucity of CtrA binding sites in the ori regions, as well as the absence of key enzymes associated with DNA replication in the respective genomes, suggest that several of these obligate intracellular bacteria may have altered replication mechanisms. Based on these analyses, criteria are set forth for identifying the ori region in genome sequencing projects.PI, PS, SS, GT and KB acknowledge support of their work from intramural funding from the University of Ioannina. SB, JDH, LB and JW acknowledge support of their work from the U.S. National Science Foundation grant EF-0328363. SB also acknowledges the support from the NASA Astrobiology Institute (NNA04CC04A

    Wolbachia pipientis associated with tephritid fruit fly pests: from basic research to applications

    Get PDF
    Members of the true fruit flies (family Tephritidae) are among the most serious agricultural pests worldwide, whose control and management demands large and costly international efforts. The need for cost-effective and environmentally friendly integrated pest management (IPM) has led to the development and implementation of autocidal control strategies. These approaches include the widely used sterile insect technique and the incompatible insect technique (IIT). IIT relies on maternally transmitted bacteria (namely Wolbachia) to cause a conditional sterility in crosses between released mass-reared Wolbachia-infected males and wild females, which are either uninfected or infected with a different Wolbachia strain (i.e., cytoplasmic incompatibility; CI). Herein, we review the current state of knowledge on Wolbachia-tephritid interactions including infection prevalence in wild populations, phenotypic consequences, and their impact on life history traits. Numerous pest tephritid species are reported to harbor Wolbachia infections, with a subset exhibiting high prevalence. The phenotypic effects of Wolbachia have been assessed in very few tephritid species, due in part to the difficulty of manipulating Wolbachia infection (removal or transinfection). Based on recent methodological advances (high-throughput DNA sequencing) and breakthroughs concerning the mechanistic basis of CI, we suggest research avenues that could accelerate generation of necessary knowledge for the potential use of Wolbachia-based IIT in area-wide integrated pest management (AW-IPM) strategies for the population control of tephritid pests.Instituto de GenéticaFil: Mateos, Mariana. Texas A&M University. Departments of Ecology and Conservation Biology, and Wildlife and Fisheries Sciences; Estados UnidosFil: Martinez Montoya, Humberto. Universidad Autónoma de Tamaulipas. Unidad Académica Multidisciplinaria Reynosa Aztlan. Laboratorio de Genética y Genómica Comparativa; MéxicoFil: Lanzavecchia, Silvia Beatriz. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Genética; ArgentinaFil: Conte, Claudia Alejandra. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Genética; ArgentinaFil: Guillén, Karina. El Colegio de la Frontera Sur; MéxicoFil: Morán-Aceves, Brenda M. El Colegio de la Frontera Sur; MéxicoFil: Toledo, Jorge. El Colegio de la Frontera Sur; MéxicoFil: Liedo, Pablo. El Colegio de la Frontera Sur; MéxicoFil: Asimakis, Elias D. University of Patras. Department of Environmental Engineering; GreciaFil: Doudoumis, Vangelis. University of Patras. Department of Environmental Engineering; GreciaFil: Kyritsis, Georgios A. University of Thessaly. Department of Agriculture Crop Production and Rural Environment. Laboratory of Entomology and Agricultural Zoology; GreciaFil: Papadopoulos, Nikos T. University of Thessaly. Department of Agriculture Crop Production and Rural Environment. Laboratory of Entomology and Agricultural Zoology; GreciaFil: Augustinos, Antonios A. Hellenic Agricultural Organization. Institute of Industrial and Forage Crops. Department of Plant Protection; GreciaFil: Segura, Diego Fernando. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Agrobiotecnología y Biología Molecular; Argentina. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Genética. Laboratorio de Genética de Insectos de Importancia Económica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Tsiamis, George. University of Patras. Department of Environmental Engineering; Greci

    The whole genome sequence of the Mediterranean fruit fly, Ceratitis capitata (Wiedemann), reveals insights into the biology and adaptive evolution of a highly invasive pest species

    Get PDF
    The Mediterranean fruit fly (medfly), Ceratitis capitata, is a major destructive insect pest due to its broad host range, which includes hundreds of fruits and vegetables. It exhibits a unique ability to invade and adapt to ecological niches throughout tropical and subtropical regions of the world, though medfly infestations have been prevented and controlled by the sterile insect technique (SIT) as part of integrated pest management programs (IPMs). The genetic analysis and manipulation of medfly has been subject to intensive study in an effort to improve SIT efficacy and other aspects of IPM control

    Unpublished Mediterranean and Black Sea records of marine alien, cryptogenic, and neonative species

    Get PDF
    To enrich spatio-temporal information on the distribution of alien, cryptogenic, and neonative species in the Mediterranean and the Black Sea, a collective effort by 173 marine scientists was made to provide unpublished records and make them open access to the scientific community. Through this effort, we collected and harmonized a dataset of 12,649 records. It includes 247 taxa, of which 217 are Animalia, 25 Plantae and 5 Chromista, from 23 countries surrounding the Mediterranean and the Black Sea. Chordata was the most abundant taxonomic group, followed by Arthropoda, Mollusca, and Annelida. In terms of species records, Siganus luridus, Siganus rivulatus, Saurida lessepsianus, Pterois miles, Upeneus moluccensis, Charybdis (Archias) longicollis, and Caulerpa cylindracea were the most numerous. The temporal distribution of the records ranges from 1973 to 2022, with 44% of the records in 2020–2021. Lethrinus borbonicus is reported for the first time in the Mediterranean Sea, while Pomatoschistus quagga, Caulerpa cylindracea, Grateloupia turuturu, and Misophria pallida are first records for the Black Sea; Kapraunia schneideri is recorded for the second time in the Mediterranean and for the first time in Israel; Prionospio depauperata and Pseudonereis anomala are reported for the first time from the Sea of Marmara. Many first country records are also included, namely: Amathia verticillata (Montenegro), Ampithoe valida (Italy), Antithamnion amphigeneum (Greece), Clavelina oblonga (Tunisia and Slovenia), Dendostrea cf. folium (Syria), Epinephelus fasciatus (Tunisia), Ganonema farinosum (Montenegro), Macrorhynchia philippina (Tunisia), Marenzelleria neglecta (Romania), Paratapes textilis (Tunisia), and Botrylloides diegensis (Tunisia).Stelios Katsanevakis, Michail Ragkousis, Maria Sini, Markos Digenis and Vasilis Gerovasileiou were supported by the Hellenic Foundation for Research and Innovation (HFRI) under the “First Call for HFRI Research Projects to support Faculty members and Researchers and the procurement of high-cost research equipment grant” (Project ALAS – “ALiens in the Aegean – a Sea under siege” (Katsanevakis et al. 2020b); Project Number: HFRI-FM17-1597). Konstantinos Tsirintanis was co-financed by Greece and the European Union (European Social Fund-ESF) through the Operational Programme “Human Resources Development, Education and Lifelong Learning”, 2014-2020, in the context of the Act “Enhancing Human Resources Research Potential by undertaking a Doctoral Research” Sub-action 2: IKY Scholarship Programme for PhD candidates in the Greek Universities. Maria Zotou was supported by the project “Coastal Environment Observatory and Risk Management in Island Regions AEGIS+” (MIS 5047038), implemented within the Operational Programme “Competitiveness, Entrepreneurship and Innovation” (NSRF 2014-2020), co financed by the Hellenic Government (Ministry of Development and Investments) and the European Union (European Regional Development Fund, Cohesion Fund). Razy Hoffman was supported by Yad-Hanadiv Foundation, through the Israel Society of Ecology and Environmental Sciences and Israel Nature and Parks Authority, an integrated program for establishing biological baselines and monitoring protocols for marine reserves in the Israeli Mediterranean Sea (Grant #10669). Tatiana Begun, Adrian Teaca and Mihaela Muresan were supported by the European Union’s Horizon 2020 BRIDGE-BS project under grant agreement no. 101000240. Fiona Tomas was supported by the project “Invasion of the tropical alga Halimeda incrassata in the Balearic Islands: ecology and invasion dynamics (AAEE119/2017)”, funded by the Vicepresidencia y Consejería de Innovación, Investigación y Turismo del Govern de les Illes Balears, with support from the European Union and FEDER funds, and the project “Una nueva alga invasora en el Mediterráneo: invasibilidad, detección y erradicación del alga tropical Halimeda incrassata (INVHALI)”, funded by the Fundación Biodiversidad, del Ministerio para la Transición Ecológica y el Reto Demográfico. Simonetta Fraschetti, Laura Tamburello, Antonia Chiarore were supported by the project PO FEAMP 2014-2020 - DRD n. 35/2019, “Innovazione, sviluppo e sostenibilità nel settore della pesca e dell'acquacoltura per la Regione Campania” (ISSPA 2.51) and the EU EASME - EMFF (Sustainable Blue Econ-omy) Project AFRIMED (http://afrimed-project.eu/, grant agreement N. 789059). Carlos Jimenez, Louis Hadjioannou, Vasilis Resaikos, Valentina Fossati, Magdalene Papatheodoulou, and Antonis Petrou were supported by MedPan Small Projects, Mava, and LIFE-IP. Louis Hadjioannou, Manos L. Moraitis and Neophytos Agrotis received funding from the European Union’s Horizon 2020 research and innovation program within the framework of the CMMI/MaRITeC-X project under grant agreement No. 857586. Ernesto Azzurro was supported by the project USEIt - Utilizzo di Sinergie operative per la gestione integrata specie aliene Invasive in Italia, funded by the research programme @CNR. Antonietta Rosso and Francesco Sciuto were supported by the University of Catania through “PiaCeRi-Piano Incentivi per la Ricerca di Ateneo 2020–22 linea di intervento 2.” This is the Catania Paleoecological Research Group contribution n. 484. Diego K. Kersting was supported by the Beatriu de Pinós programme funded by the Secretary of Universities and Research (Government of Catalonia) and the Horizon 2020 programme of research and innovation of the European Union under the Marie Sklodowska-Curie grant agreement No 801370. Francesco Tiralongo was supported by the AlienFish project of Ente Fauna Marina Mediterranea (Scientific Organization for Research and Conservation of Marine Biodiversity, 96012 Avola, Italy), a citizen science project for monitoring and studying rare and non-indigenous fish in Italian waters. Adriana Vella, was supported by funds through the BioCon_Innovate Research Excellence Grant from the University of Malta awarded to her. Noel Vella was supported by REACH HIGH Scholars Programme-Post Doctoral Grant for the FINS project. Some of the records provided by Victor Surugiu were obtained during surveys carried out within the framework of the project “Adequate management of invasive species in Romania, in accordance with EU Regulation 1143/2014 on the prevention and management of the introduction and spread of invasive alien species”, SMIS 2014+ 120008, coordinated by the Romanian Ministry of Environment, Water and Forests in partnership with the University of Bucharest (2018–2022). Alan Deidun and Alessio Marrone were supported by the “Spot The Alien” citizen science campaign for the monitoring of the Alien species in the Maltese archipelago and by the Interreg Italia-Malta Harmony project. The authors from the National Institute of Biology (Slovenia) acknowledge the financial support of the Slovenian Research Agency (Research Core Funding No. P1-0237) and of the Ministry of Agriculture, Forestry and Food (project “Survey of the species richness and abundance of alien species in the Slovenian Sea”). Emanuele Mancini and Fabio Collepardo Coccia were supported by the project PO-FEAMP 2014-2020 “BIOBLITZ: research, knowledge and participation for the sustainable management of marine resources (BioBlitz Blu 2020)” coordinated by CURSA for MIPAAF, the Italian Ministry of Agricultural, Food and Forestry Policies, Measure 1.40 - Protection and restoration of biodiversity and marine ecosystems and compensation schemes in the context of sustainable fishing activities. Daniele Grech was supported by the PO-FEAMP 2014-2020 project ECOGESTOCK “Approccio ECOsistemico per la tutela e la GEStione delle risorse biologiche e STOCK ittici nelle acque interne”, the citizen science project Progetto Fucales: chi le ha viste? and the Paralenz Every dive counts sponsor. Jamila Rizgalla was supported by the project Snowball for the monitoring of alien species in Libyan waters له اهتفش له اهتدطصا ؟) have you seen it have you fished it?). Gerasimos Kondylatos and Dimitrios Mavrouleas were supported by the project “EXPLIAS” (MIS (ΟΠΣ): 5049912), design and piloting methods of commercial exploitation of invasive alien species with a view to contributing to their population control, coordinated by the National Technical University of Athens with the collaboration of the Hellenic Centre for Marine Research and the University of the Aegean and co-founded by Greece and the European Union. G. Kondylatos and Savvas Nikolidakis were supported by the project “SAMOS” (ID CODE: 32.2072004/001), a study for a submarine productive park in Marathokampos of Samos. Paraskevi K. Karachle, Aikaterini Dogrammatzi, Giorgos A. Apostolopoulos, Kassiani Konida and Melina Nalmpanti were supported by the project “4ALIEN: Biology and the potential economic exploitation of four alien species in the Hellenic Seas”, funded by NRSF 2017-2020 (MIS (ΟΠΣ): 5049511). Fabio Crocetta and Riccardo Virgili were partially funded by the project PO FEAMP Campania 2014–2020, DRD n. 35 of 15th March 2018, Innovazione, sviluppo e sostenibilità nel settore della pesca e dell’acquacoltura per la regione Campania, Misura 2.51, WP5, Task 5.5 Presenza e distribuzione di specie non indigene del macrozoobenthos e del necton in Campania. Michel Bariche was partially funded by the University Research Board of the American University of Beirut (DDF 103951/2592). Constantinos G. Georgiadis, Dimitra Lida Rammou, Paschalis Papadamakis and Sotiris Orfanidis were supported by the MSFD monitoring program. Sonia Smeraldo was supported by the MPA-Engage project, led by the Institute of Marine Sciences of the Spanish National Research Council and funded by the Interreg MED program. Evgeniia Karpova acknowledge that the publication of this article was in part carried out within the framework of the state assignment of the FRC IBSS “Patterns of Formation and Anthropogenic Transformation of Biodiversity and Bioresources of the Azov– Black Sea Basin and Other Regions of the World Ocean” (No. 121030100028-0). Elena Slynko’s work was carried out within the framework of a State Assignment no. 121051100109-1 of IBIW RAS. Manuela Falautano and Luca Castriota were supported by ISPRA citizen science campaigns for the monitoring of alien species through the dedicated institutional project ([email protected]). María Altamirano was supported by the project RUGULOPTERYX funded by Fundación Biodiversidad-Ministerio para la Transición Ecológica y el reto Demográfico (Spain) and the project UMA20-FEDERJA-006 with support from the European Union and FEDER funds and Junta de Andalucía. Records provided by L. Mangialajo were collected in the framework of projects funded by the Pew Charitable Trust, by the European Commission (AFRIMED, http://afrimed-project.eu/, grant agreement N. 789059) and by the Académie 3 de l’Université Côte d’Azur (projet CONVOST).Peer reviewe

    Unpublished Mediterranean and Black Sea records of marine alien, cryptogenic, and neonative species

    Get PDF
    To enrich spatio-temporal information on the distribution of alien, cryptogenic, and neonative species in the Mediterranean and the Black Sea, a collective effort by 173 marine scientists was made to provide unpublished records and make them open access to the scientific community. Through this effort, we collected and harmonized a dataset of 12,649 records. It includes 247 taxa, of which 217 are Animalia, 25 Plantae and 5 Chromista, from 23 countries surrounding the Mediterranean and the Black Sea. Chordata was the most abundant taxonomic group, followed by Arthropoda, Mollusca, and Annelida. In terms of species records, Siganus luridus, Siganus rivulatus, Saurida lessepsianus, Pterois miles, Upeneus moluccensis, Charybdis (Archias) longicollis, and Caulerpa cylindracea were the most numerous. The temporal distribution of the records ranges from 1973 to 2022, with 44% of the records in 2020–2021. Lethrinus borbonicus is reported for the first time in the Mediterranean Sea, while Pomatoschistus quagga, Caulerpa cylindracea, Grateloupia turuturu, and Misophria pallida are first records for the Black Sea; Kapraunia schneideri is recorded for the second time in the Mediterranean and for the first time in Israel; Prionospio depauperata and Pseudonereis anomala are reported for the first time from the Sea of Marmara. Many first country records are also included, namely: Amathia verticillata (Montenegro), Ampithoe valida (Italy), Antithamnion amphigeneum (Greece), Clavelina oblonga (Tunisia and Slovenia), Dendostrea cf. folium (Syria), Epinephelus fasciatus (Tunisia), Ganonema farinosum (Montenegro), Macrorhynchia philippina (Tunisia), Marenzelleria neglecta (Romania), Paratapes textilis (Tunisia), and Botrylloides diegensis (Tunisia).peer-reviewe
    corecore