9 research outputs found

    Biological Properties of Acidic Cosmetic Water from Seawater

    Get PDF
    This current work was to investigate the biological effects of acidic cosmetic water (ACW) on various biological assays. ACW was isolated from seawater and demonstrated several bio-functions at various concentration ranges. ACW showed a satisfactory effect against Staphylococcus aureus, which reduced 90% of bacterial growth after a 5-second exposure. We used cultured human peripheral blood mononuclear cells (PBMCs) to test the properties of ACW in inflammatory cytokine release, and it did not induce inflammatory cytokine release from un-stimulated, normal PBMCs. However, ACW was able to inhibit bacterial lipopolysaccharide (LPS)-induced inflammatory cytokine TNF-α released from PBMCs, showing an anti-inflammation potential. Furthermore, ACW did not stimulate the rat basophilic leukemia cell (RBL-2H3) related allergy response on de-granulation. Our data presented ACW with a strong anti-oxidative ability in a superoxide anion radical scavenging assay. In mass spectrometry information, magnesium and zinc ions demonstrated bio-functional detections for anti-inflammation as well as other metal ions such as potassium and calcium were observed. ACW also had minor tyrosinase and melanin decreasing activities in human epidermal melanocytes (HEMn-MP) without apparent cytotoxicity. In addition, the cell proliferation assay illustrated anti-growth and anti-migration effects of ACW on human skin melanoma cells (A375.S2) indicating that it exerted the anti-cancer potential against skin cancer. The results obtained from biological assays showed that ACW possessed multiple bioactivities, including anti-microorganism, anti-inflammation, allergy-free, antioxidant, anti-melanin and anticancer properties. To our knowledge, this was the first report presenting these bioactivities on ACW

    Synthesis of some 2-(3-butenyl) cyclohexanones

    No full text
    Due to the character of the original source materials and the nature of batch digitization, quality control issues may be present in this document. Please report any quality issues you encounter to [email protected], referencing the URI of the item.Not availabl

    Evaluation of a matrix-assisted laser desorption ionization-time of flight mass spectrometry assisted, selective broth method to screen for vancomycin-resistant enterococci in patients at high risk

    No full text
    <div><p>Background</p><p>Bile esculin azide with vancomycin (BEAV) medium is a sensitive, but slightly less specific method for vancomycin-resistant enterococci (VRE) screening. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) is a rapid method for identification of clinical pathogens. This study aimed to assess the performance of a novel combination screening test for VRE, using BEAV broth combined with MALDI-TOF MS.</p><p>Materials and methods</p><p>Clinical specimens were collected from patients at risk of VRE carriage, and tested by the novel combination method, using selective BEAV broth culture method followed by MALDI-TOF MS identification (SBEAVM). The reference method used for comparison was the ChromID VRE agar method.</p><p>Results</p><p>A total of 135 specimens were collected from 78 patients, and 63 specimens tested positive for VRE positive using the ChromID VRE method (positive rate 46.7%). The sensitivity, specificity, positive predictive value, and negative predictive value of SBEAVM method after an incubation period of 28 hours were 93.7%, 90.3%, 89.4%, and 94.2%, respectively. The SBEAVM method when compared to the ChromID VRE method had a shorter turnaround time (29 vs. 48–72 hours) and lower laboratory cost (2.11vs.2.11 vs. 3.23 per test).</p><p>Conclusions</p><p>This study demonstrates that SBEAVM is a rapid, inexpensive, and accurate method for use in VRE screening.</p></div
    corecore