7 research outputs found

    Partial migration links local surface-water management to large-scale elephant conservation in the world's largest transfrontier conservation area

    Get PDF
    Successful conservation of large mammals requires vast areas to maintain viable populations. This often requires to embrace large-scale approaches that extend beyond the borders of formally protected areas. However, the quality of the scientific knowledge about animal movement across large conservation areas vary, and could limit the effectiveness of conservation efforts. Here we used GPS tracking to conduct the first study of large-scale movements of African elephants (Loxodonta africana) in Hwange NP (Zimbabwe), which is an unfenced park part of the Kavango-Zambezi Transfrontier Conservation Area, the world's largest terrestrial conservation area. We show that some, but not all, elephants migrate seasonally, with wet- to dry-season movements linked to the provision of water in Hwange NP. The distance between the most distant locations of individual elephants reaches 260 km. In this partial migration system influenced by management practices, over 20% of the elephants have wet-season ranges established in Botswana, outside of protected areas in private or communal wildlife management areas. Our results call for the urgent drafting of a regional action plan, involving all stakeholders identified by our study and their neighbours, to predict and react to what would happen if water provision in Hwange NP was to suddenly change because of management practices or extreme climate change. Beyond this critical conservation issue for the world's largest elephant meta-population, our results also highlight the relevance of large-scale conservation areas combined with integrative planning involving national wildlife management institutions and the private and communal sector.Jeff Neu, the Wilderness Wildlife Trust, the grants FEAR (ANR-08-BLAN-0022), SAVARID (ANR-11-CEPS-003), LANDTHIRST (ANR-16-CE02-0001-01) of the French ‘Agence Nationale de la Recherche’ and the Zone Atelier program of the CNRS.http://www.elsevier.com/locate/biocon2018-11-30hj2017Mammal Research InstituteZoology and Entomolog

    Cueing on distant conditions before migrating does not prevent false starts: a case study with African elephants

    No full text
    International audienceMigratory animals often use environmental cues to time their seasonal migrations. Local conditions may, however, differ from distant ones, and current conditions may poorly predict future conditions. This may be particularly true for early wet season conditions in tropical systems, as storms and associated rainfall events are generally not predictable at the scale of weeks or days and are heterogeneously distributed even at the scale of a few kilometres. How migratory animals cope with such challenges, and the consequences they may have, remain poorly known. We used time-to-event models based on GPS data from 19 African elephant herds from Hwange National Park (Zimbabwe) to study the effect of local and distant rainfall events on the elephants' decision to initiate their wet season migration. Elephants relied more on distant rainfall events occurring along the future migration route than on local events when initiating their migration. Such ability to use distant cues does not, however, ensure an immediate migration success. In over 30% of the cases the elephants came back to their dry season range, sometimes after having travelled >80% of the expected migration distance. This happened particularly when there was little additional rain falling during the migration. All elephants successfully migrated later in the season. Our study improves the understanding of the migratory ecology of elephants. More broadly, it raises questions about the reliability of rainfall as a migratory cue in tropical systems, and shed light on one of its potential consequences, the poorly quantified phenomenon of migration false starts

    Cueing on distant conditions before migrating does not prevent false starts : a case study with African elephants

    No full text
    Migratory animals often use environmental cues to time their seasonal migrations. Local conditions may, however, differ from distant ones, and current conditions may poorly predict future conditions. This may be particularly true for early wet season conditions in tropical systems, as storms and associated rainfall events are generally not predictable at the scale of weeks or days and are heterogeneously distributed even at the scale of a few kilometres. How migratory animals cope with such challenges, and the consequences they may have, remain poorly known. We used time-to-event models based on GPS data from 19 African elephant herds from Hwange National Park (Zimbabwe) to study the effect of local and distant rainfall events on the elephants’ decision to initiate their wet season migration. Elephants relied more on distant rainfall events occurring along the future migration route than on local events when initiating their migration. Such ability to use distant cues does not, however, ensure an immediate migration success. In over 30% of the cases, the elephants came back to their dry season range, sometimes after having travelled > 80% of the expected migration distance. This happened particularly when there was little additional rain falling during the migration. All elephants successfully migrated later in the season. Our study improves the understanding of the migratory ecology of elephants. More broadly, it raises questions about the reliability of rainfall as a migratory cue in tropical systems, and shed light on one of its potential consequences, the poorly quantified phenomenon of migration false starts.Jeff Neu, the Wilderness Wildlife Trust, and the French ‘Agence Nationale de la Recherche’ through grants FEAR (ANR-08-BLAN-0022), SAVARD (ANR-11-CEPS-003), LANDTHIRST (ANR-16-CE02-0001-01). Work in Hwange National Park is generally supported by the ‘Zone Atelier’ program of the CNRS.https://link.springer.com/journal/4422023-03-13hj2023Mammal Research InstituteZoology and Entomolog

    Mapping out a future for ungulate migrations : Limited mapping of migrations hampers conservation

    No full text

    Mapping out a future for ungulate migrations

    No full text
    Migration of ungulates (hooved mammals) is a fundamental ecological process that promotes abundant herds, whose effects cascade up and down terrestrial food webs. Migratory ungulates provide the prey base that maintains large carnivore and scavenger populations and underpins terrestrial biodiversity (fig. S1). When ungulates move in large aggregations, their hooves, feces, and urine create conditions that facilitate distinct biotic communities. The migrations of ungulates have sustained humans for thousands of years, forming tight cultural links among Indigenous people and local communities. Yet ungulate migrations are disappearing at an alarming rate (1). Efforts by wildlife managers and conservationists are thwarted by a singular challenge: Most ungulate migrations have never been mapped in sufficient detail to guide effective conservation. Without a strategic and collaborative effort, many of the world's great migrations will continue to be truncated, severed, or lost in the coming decades. Fortunately, a combination of animal tracking datasets, historical records, and local and Indigenous knowledge can form the basis for a global atlas of migrations, designed to support conservation action and policy at local, national, and international levels

    Mapping out a future for ungulate migrations : Limited mapping of migrations hampers conservation

    No full text
    corecore