303 research outputs found

    Translation of clinical problems in osteoarthritis into pathophysiological research goals

    Get PDF
    Osteoarthritis (OA) accounts for more disability among the elderly than any other disease and is associated with an increased mortality rate. The prevalence in Europe will rise in the future since this continent has a strongly ageing population and an obesity epidemic; obesity and age both being major risk factors for OA. No adequate therapeutic options, besides joint replacement, are available, although they are greatly needed and should be acquired by adequate research investments. However, the perspective on OA from a researcher's point of view is not always aligned with the perspective of a patient with OA. Researchers base their views on OA mainly on abnormalities in structure and function while patients consider OA as a collection of symptoms. In this viewpoint paper, we discuss the possibility of translating the most important clinical problems into pathophysiological research goals to facilitate the translation from bench to bedside and vice versa. This viewpoint is the outcome of a dialogue within the 'European League Against Rheumatism study group on OA' and People with Arthritis/Rheumatism across Europe (PARE) representatives

    Evaluation of MMP1 and MMP3 gene polymorphisms in exfoliation syndrome and exfoliation glaucoma

    Get PDF
    Purpose: To investigate possible genetic associations of matrix metalloproteinase-1 (MMP1) and MMP3 gene polymorphisms with exfoliation syndrome (XFS) with (XFS/+G) and without (XFS/-G) glaucoma in a cohort of Greek patients. Methods: A total of 182 unrelated Greek patients with XFS, including 92 patients with XFS/+G, and 214 unrelated age- and gender-matched controls were enrolled in the study. MMP1-1607 1G/2G (rs1799750) and MMP3-1171 5A/6A (rs3025058) polymorphisms were determined using standard PCR/restriction fragment length polymorphism methods. Differences in allele and genotype distributions were analyzed using logistic regression. Results: The distribution of genotypes and alleles in MMP1 and MMP3 polymorphisms was not significantly different between cases with exfoliation syndrome, with or without glaucoma, and controls. However, the allele contrast for the MMP1 variant showed a trend for a significant association with XFS/-G (Odds Ratio=1.47 [1.03-2.10]), since after correction for multiple comparisons, this association was no longer statistically significant. Conclusions: Our study provided some evidence of a possible role of the MMP1 variant in the development of exfoliation syndrome in Greek patients

    Central Role of SREBP-2 in the Pathogenesis of Osteoarthritis

    Get PDF
    Background: Recent studies have implied that osteoarthritis (OA) is a metabolic disease linked to deregulation of genes involved in lipid metabolism and cholesterol efflux. Sterol Regulatory Element Binding Proteins (SREBPs) are transcription factors regulating lipid metabolism with so far no association with OA. Our aim was to test the hypothesis that SREBP-2, a gene that plays a key role in cholesterol homeostasis, is crucially involved in OA pathogenesis and to identify possible mechanisms of action. Methodology/Principal Findings: We performed a genetic association analysis using a cohort of 1,410 Greek OA patients and healthy controls and found significant association between single nucleotide polymorphism (SNP) 1784G>C in SREBP-2 gene and OA development. Moreover, the above SNP was functionally active, as normal chondrocytes’ transfection with SREBP-2-G/C plasmid resulted in interleukin-1β and metalloproteinase-13 (MMP-13) upregulation. We also evaluated SREBP-2, its target gene 3-hydroxy-3-methylglutaryl-coenzymeA reductase (HMGCR), phospho-phosphoinositide3-kinase (PI3K), phospho-Akt, integrin-alphaV (ITGAV) and transforming growth factor-β\beta (TGF-β\beta) mRNA and protein expression levels in osteoarthritic and normal chondrocytes and found that they were all significantly elevated in OA chondrocytes. To test whether TGF-β\beta alone can induce SREBP-2, we treated normal chondrocytes with TGF-β\beta and found significant upregulation of SREBP-2, HMGCR, phospho-PI3K and MMP-13. We also showed that TGF-β\beta activated aggrecan (ACAN) in chondrocytes only through Smad3, which interacts with SREBP-2. Finally, we examined the effect of an integrin inhibitor, cyclo-RGDFV peptide, on osteoarthritic chondrocytes, and found that it resulted in significant upregulation of ACAN and downregulation of SREBP-2, HMGCR, phospho-PI3K and MMP-13 expression levels. Conclusions/Significance: We demonstrated, for the first time, the association of SREBP-2 with OA pathogenesis and provided evidence on the molecular mechanism involved. We suggest that TGF-β\beta induces SREBP-2 pathway activation through ITGAV and PI3K playing a key role in OA and that integrin blockage may be a potential molecular target for OA treatment

    Leptin as a critical regulator of hepatocellular carcinoma development through modulation of human telomerase reverse transcriptase

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Numerous epidemiological studies have documented that obesity is associated with hepatocellular carcinoma (HCC). The aim of this study was to investigate the biological actions regulated by leptin, the obesity biomarker molecule, and its receptors in HCC and the correlation between leptin and human telomerase reverse transcriptase (hTERT), a known mediator of cellular immortalization.</p> <p>Methods</p> <p>We investigated the relationship between leptin, leptin receptors and hTERT mRNA expression in HCC and healthy liver tissue samples. In HepG2 cells, chromatin immunoprecipitation assay was used to study signal transducer and activator of transcription-3 (STAT3) and myc/mad/max transcription factors downstream of leptin which could be responsible for hTERT regulation. Flow cytometry was used for evaluation of cell cycle modifications and MMP1, 9 and 13 expression after treatment of HepG2 cells with leptin. Blocking of leptin's expression was achieved using siRNA against leptin and transfection with liposomes.</p> <p>Results</p> <p>We showed, for the first time, that leptin's expression is highly correlated with hTERT expression levels in HCC liver tissues. We also demonstrated in HepG2 cells that leptin-induced up-regulation of hTERT and TA was mediated through binding of STAT3 and Myc/Max/Mad network proteins on <it>hTERT </it>promoter. We also found that leptin could affect hepatocellular carcinoma progression and invasion through its interaction with cytokines and matrix mettaloproteinases (MMPs) in the tumorigenic microenvironment. Furthermore, we showed that histone modification contributes to leptin's gene regulation in HCC.</p> <p>Conclusions</p> <p>We propose that leptin is a key regulator of the malignant properties of hepatocellular carcinoma cells through modulation of hTERT, a critical player of oncogenesis.</p

    CAG Repeat Variants in the POLG1 Gene Encoding mtDNA Polymerase-Gamma and Risk of Breast Cancer in African-American Women

    Get PDF
    The DNA polymerase-gamma (POLG) gene, which encodes the catalytic subunit of enzyme responsible for directing mitochondrial DNA replication in humans, contains a polyglutamine tract encoded by CAG repeats of varying length. The length of the CAG repeat has been associated with the risk of testicular cancer, and other genomic variants that impact mitochondrial function have been linked to breast cancer risk in African-American (AA) women. We evaluated the potential role of germline POLG-CAG repeat variants in breast cancer risk in a sample of AA women (100 cases and 100 age-matched controls) who participated in the Women's Circle of Health Study, an ongoing multi-institutional, case-control study of breast cancer. Genotyping was done by fragment analysis in a blinded manner. Results from this small study suggest the possibility of an increased risk of breast cancer in women with minor CAG repeat variants of POLG, but no statistically significant differences in CAG repeat length were observed between cases and controls (multivariate-adjusted odds ratio 1.74; 95% CI, 0.49–6.21). Our study suggests that POLG-CAG repeat length is a potential risk factor for breast cancer that needs to be explored in larger population-based studies

    Integrative MicroRNA and Proteomic Approaches Identify Novel Osteoarthritis Genes and Their Collaborative Metabolic and Inflammatory Networks

    Get PDF
    BACKGROUND: Osteoarthritis is a multifactorial disease characterized by destruction of the articular cartilage due to genetic, mechanical and environmental components affecting more than 100 million individuals all over the world. Despite the high prevalence of the disease, the absence of large-scale molecular studies limits our ability to understand the molecular pathobiology of osteoathritis and identify targets for drug development. METHODOLOGY/PRINCIPAL FINDINGS: In this study we integrated genetic, bioinformatic and proteomic approaches in order to identify new genes and their collaborative networks involved in osteoarthritis pathogenesis. MicroRNA profiling of patient-derived osteoarthritic cartilage in comparison to normal cartilage, revealed a 16 microRNA osteoarthritis gene signature. Using reverse-phase protein arrays in the same tissues we detected 76 differentially expressed proteins between osteoarthritic and normal chondrocytes. Proteins such as SOX11, FGF23, KLF6, WWOX and GDF15 not implicated previously in the genesis of osteoarthritis were identified. Integration of microRNA and proteomic data with microRNA gene-target prediction algorithms, generated a potential "interactome" network consisting of 11 microRNAs and 58 proteins linked by 414 potential functional associations. Comparison of the molecular and clinical data, revealed specific microRNAs (miR-22, miR-103) and proteins (PPARA, BMP7, IL1B) to be highly correlated with Body Mass Index (BMI). Experimental validation revealed that miR-22 regulated PPARA and BMP7 expression and its inhibition blocked inflammatory and catabolic changes in osteoarthritic chondrocytes. CONCLUSIONS/SIGNIFICANCE: Our findings indicate that obesity and inflammation are related to osteoarthritis, a metabolic disease affected by microRNA deregulation. Gene network approaches provide new insights for elucidating the complexity of diseases such as osteoarthritis. The integration of microRNA, proteomic and clinical data provides a detailed picture of how a network state is correlated with disease and furthermore leads to the development of new treatments. This strategy will help to improve the understanding of the pathogenesis of multifactorial diseases such as osteoarthritis and provide possible novel therapeutic targets

    Izloženost genotoksičnim agensima iz životnog okoliša tijekom prenatalnog razvoja i djetinjstva

    Get PDF
    Health disorders and diseases related to environmental exposure in children such as cancer and immunologic disturbances (asthma, allergies) are on the rise. However, complex transplacental and prepubertal genotoxicology is given very limited consideration, even though intrauterine development and early childhood may be critical for elucidating the cancer aetiology. The foetus is transplacentally exposed to contaminants in food and environment such as various chemicals, drugs, radiochemically contaminated water and air. Target organs of xenobiotic action may differ between the mother and the foetus due to specific stage of developmental physiology and enzyme distribution. This in turn may lead to different levels of clastogenic and aneugenic metabolites of the same xenobiotic in the mother and the foetus. Adult’s protective behaviour is not sufficient to isolate children from radioisotopes, pesticides, toxic metals and metalloids, environmental tobacco smoke, endocrine disrupting chemicals, and various food contaminants, which are just a part of the stressors present in a polluted environment. In order to improve legislation related to foetus and child exposure to genotoxic and possibly carcinogenic agents, oncologists, paediatricians, environmental health specialists, and genotoxicologists should work together much more closely to make a more effective use of accumulated scientific data, with the final aim to lower cancer incidence and mortality.Unatoč velikim naporima da se smanji okolišna izloženost u djece se dalje bilježi trend porasta pojavnosti karcinoma i imunosnih poremećaja (astma, alergije). Premda su intrauterini razvoj i rano djetinjstvo kritično razdoblje za tumačenje etiologije nastanka karcinoma, transplacentalna i prepubertetna genotoksikologija do danas su slabo istražene. Fetus je transplacentalno izložen brojnim fizikalnim i kemijskim čimbenicima: kontaminantima iz hrane i okoliša, radiokemijski kontaminiranoj vodi, zraku te lijekovima. Ciljna tkiva za djelovanje ksenobiotika mogu biti različita u majke i fetusa zbog različitosti u razvojnoj fiziologiji i distribuciji enzima. Zbog toga u organizmu majke i fetusa mogu nastati različite razine klastogenih i aneugenih metabolita istog ksenobiotika. Zaštitna uloga odraslih u namjeri da spriječe negativne utjecaje onečišćenog okoliša na djetetovo zdravlje često je ograničena jer su radioizotopi, olovo, PCB, pasivno pušenje, živa, endokrino aktivne tvari, pesticidi i kontaminanti prisutni u svim životnim područjima tijekom razvoja i rasta djeteta. Kako bi se poboljšalo zakonodavstvo vezano uz izloženost djece genotoksičnim i vjerojatno kancerogenim tvarima, tijekom razvoja potrebna je bolja suradnja onkologa, pedijatara, stručnjaka zdravstvene ekologije i genotoksikologa. Na taj način ostvarilo bi se uspješnije iskorištavanje postojećih znanstvenih podataka u cilju smanjenja incidencije karcinoma i mortaliteta

    Distinct cytokine profiles of circulating mononuclear cells stimulated with Staphylococcus aureus enterotoxin A in vitro during early and late episodes of chronic osteomyelitis

    Full text link
    We investigated the cytokine profile of peripheral mononuclear cells from chronic osteomyelitis (OST) patients following in vitro stimulation with staphylococcal enterotoxin A (SEA). We demonstrate that stimulation with SEA induced prominent lymphocyte proliferation and high levels of tumour necrosis factor (TNF)-α, interleukin (IL)-4 and IL-10 secretion in both OST and non-infected individuals (NI). Even though stimulation with SEA had no impact on IL-6 production in either patient group, the baseline level of IL-6 production by cells from OST patients was always significantly less than that produced by cells from NI. After classifying the osteomyelitic episodes based on the time after the last reactivation event as "early" (1-4 months) or "late" osteomyelitis (5-12 months), we found that increased levels of TNF-α and IL-4 in combination with decreased levels of IL-6 were observed in the early episodes. By contrast, increased levels of IL-10, IL-2 and IL-6 were hallmarks of late episodes. Our data demonstrate that early osteomyelitic episodes are accompanied by an increased frequency of "high producers" of TNF-α and IL-4, whereas late events are characterised by increased frequencies of "high producers" of IL-10, IL-6 and IL-2. These findings demonstrate the distinct cytokine profiles in chronic osteomyelitis, with a distinct regulation of IL-6 production during early and late episodes
    corecore