105 research outputs found

    A Monte Carlo simulation of the Sudbury Neutrino Observatory proportional counters

    Get PDF
    The third phase of the Sudbury Neutrino Observatory (SNO) experiment added an array of 3He proportional counters to the detector. The purpose of this Neutral Current Detection (NCD) array was to observe neutrons resulting from neutral-current solar neutrino-deuteron interactions. We have developed a detailed simulation of the current pulses from the NCD array proportional counters, from the primary neutron capture on 3He through the NCD array signal-processing electronics. This NCD array Monte Carlo simulation was used to model the alpha-decay background in SNO's third-phase 8B solar-neutrino measurement.Comment: 38 pages; submitted to the New Journal of Physic

    Neutrino oscillations from relativistic flavor currents

    Full text link
    By resorting to recent results on the relativistic currents for mixed (flavor) fields, we calculate a space-time dependent neutrino oscillation formula in Quantum Field Theory. Our formulation provides an alternative to existing approaches for the derivation of space dependent oscillation formulas and it also accounts for the corrections due to the non-trivial nature of the flavor vacuum. By exploring different limits of our formula, we recover already known results. We study in detail the case of one-dimensional propagation with gaussian wavepackets both in the relativistic and in the non-relativistic regions: in the last case, numerical evaluations of our result show significant deviations from the standard formula.Comment: 16 pages, 4 figures, RevTe

    Electron Antineutrino Search at the Sudbury Neutrino Observatory

    Get PDF
    Upper limits on the \nuebar flux at the Sudbury Neutrino Observatory have been set based on the \nuebar charged-current reaction on deuterium. The reaction produces a positron and two neutrons in coincidence. This distinctive signature allows a search with very low background for \nuebar's from the Sun and other potential sources. Both differential and integral limits on the \nuebar flux have been placed in the energy range from 4 -- 14.8 MeV. For an energy-independent \nu_e --> \nuebar conversion mechanism, the integral limit on the flux of solar \nuebar's in the energy range from 4 -- 14.8 MeV is found to be \Phi_\nuebar <= 3.4 x 10^4 cm^{-2} s^{-1} (90% C.L.), which corresponds to 0.81% of the standard solar model 8B \nu_e flux of 5.05 x 10^6 cm^{-2} s^{-1}, and is consistent with the more sensitive limit from KamLAND in the 8.3 -- 14.8 MeV range of 3.7 x 10^2 cm^{-2} s^{-1} (90% C.L.). In the energy range from 4 -- 8 MeV, a search for \nuebar's is conducted using coincidences in which only the two neutrons are detected. Assuming a \nuebar spectrum for the neutron induced fission of naturally occurring elements, a flux limit of Phi_\nuebar <= 2.0 x 10^6 cm^{-2} s^{-1}(90% C.L.) is obtained.Comment: submitted to Phys. Rev.

    Measurement of the Total Active 8B Solar Neutrino Flux at the Sudbury Neutrino Observatory with Enhanced Neutral Current Sensitivity

    Get PDF
    The Sudbury Neutrino Observatory (SNO) has precisely determined the total active (nu_x) 8B solar neutrino flux without assumptions about the energy dependence of the nu_e survival probability. The measurements were made with dissolved NaCl in the heavy water to enhance the sensitivity and signature for neutral-current interactions. The flux is found to be 5.21 +/- 0.27 (stat) +/- 0.38 (syst) x10^6 cm^{-2}s^{-1}, in agreement with previous measurements and standard solar models. A global analysis of these and other solar and reactor neutrino results yields Delta m^{2} = 7.1^{+1.2}_{-0.6}x10^{-5} ev^2 and theta = 32.5^{+2.4}_{-2.3} degrees. Maximal mixing is rejected at the equivalent of 5.4 standard deviations.Comment: Submitted to Phys. Rev. Let

    Combined Analysis of all Three Phases of Solar Neutrino Data from the Sudbury Neutrino Observatory

    Get PDF
    We report results from a combined analysis of solar neutrino data from all phases of the Sudbury Neutrino Observatory. By exploiting particle identification information obtained from the proportional counters installed during the third phase, this analysis improved background rejection in that phase of the experiment. The combined analysis resulted in a total flux of active neutrino flavors from 8B decays in the Sun of (5.25 \pm 0.16(stat.)+0.11-0.13(syst.))\times10^6 cm^{-2}s^{-1}. A two-flavor neutrino oscillation analysis yielded \Deltam^2_{21} = (5.6^{+1.9}_{-1.4})\times10^{-5} eV^2 and tan^2{\theta}_{12}= 0.427^{+0.033}_{-0.029}. A three-flavor neutrino oscillation analysis combining this result with results of all other solar neutrino experiments and the KamLAND experiment yielded \Deltam^2_{21} = (7.41^{+0.21}_{-0.19})\times10^{-5} eV^2, tan^2{\theta}_{12} = 0.446^{+0.030}_{-0.029}, and sin^2{\theta}_{13} = (2.5^{+1.8}_{-1.5})\times10^{-2}. This implied an upper bound of sin^2{\theta}_{13} < 0.053 at the 95% confidence level (C.L.)

    Low Multiplicity Burst Search at the Sudbury Neutrino Observatory

    Get PDF
    Results are reported from a search for low-multiplicity neutrino bursts in the Sudbury Neutrino Observatory (SNO). Such bursts could indicate detection of a nearby core-collapse supernova explosion. The data were taken from Phase I (November 1999 - May 2001), when the detector was filled with heavy water, and Phase II (July 2001 - August 2003), when NaCl was added to the target. The search was a blind analysis in which the potential backgrounds were estimated and analysis cuts were developed to eliminate such backgrounds with 90% confidence before the data were examined. The search maintained a greater than 50% detection probability for standard supernovae occurring at a distance of up to 60 kpc for Phase I and up to 70 kpc for Phase II. No low-multiplicity bursts were observed during the data-taking period.Comment: 11 pages, 4 figures, submitted to Ap

    Independent measurement of the total active B8 solar neutrino flux using an array of He3 proportional counters at the Sudbury Neutrino Observatory

    Get PDF
    The Sudbury Neutrino Observatory (SNO) used an array of 3He proportional counters to measure the rate of neutral-current interactions in heavy water and precisely determined the total active (νx) 8B solar neutrino flux. This technique is independent of previous methods employed by SNO. The total flux is found to be 5.54-0.31+0.33(stat)-0.34+0.36(syst)×106  cm-2 s-1, in agreement with previous measurements and standard solar models. A global analysis of solar and reactor neutrino results yields Δm2=7.59-0.21+0.19×10-5  eV2 and θ=34.4-1.2+1.3 degrees. The uncertainty on the mixing angle has been reduced from SNO’s previous results
    • …
    corecore