859 research outputs found

    Basonuclin-Null Mutation Impairs Homeostasis and Wound Repair in Mouse Corneal Epithelium

    Get PDF
    At least two cellular processes are required for corneal epithelium homeostasis and wound repair: cell proliferation and cell-cell adhesion. These processes are delicately balanced to ensure the maintenance of normal epithelial function. During wound healing, these processes must be reprogrammed in coordination to achieve a rapid re-epithelialization. Basonuclin (Bnc1) is a cell-type-specific transcription factor expressed mainly in the proliferative keratinocytes of stratified epithelium (e.g., corneal epithelium, epidermis and esophageal epithelium) and the gametogenic cells in testis and ovary. Our previous work suggested that basonuclin could regulate transcription of ribosomal RNA genes (rDNA) and genes involved in chromatin structure, transcription regulation, cell-cell junction/communication, ion-channels and intracelllular transportation. However, basonuclin's role in keratinocytes has not been demonstrated in vivo. Here we show that basonuclin-null mutation disrupts corneal epithelium homeostasis and delays wound healing by impairing cell proliferation. In basonuclin-null cornea epithelium, RNA polymerase I (Pol I) transcription is perturbed. This perturbation is unique because it affects transcripts from a subset of rDNA. Basonuclin-null mutation also perturbs RNA polymerase II (Pol II) transcripts from genes encoding chromatin structure proteins histone 3 and HMG2, transcription factor Gli2, gap-junction protein connexin 43 and adheren E-cadherin. In most cases, a concerted change in mRNA and protein level is observed. However, for E-cadherin, despite a notable increase in its mRNA level, its protein level was reduced. In conclusion, our study establishes basonuclin as a regulator of corneal epithelium homeostasis and maintenance. Basonuclin likely coordinates functions of a subset of ribosomal RNA genes (rDNA) and a group of protein coding genes in cellular processes critical for the regulation of cell proliferation

    Surface Modifications by Field Induced Diffusion

    Get PDF
    By applying a voltage pulse to a scanning tunneling microscope tip the surface under the tip will be modified. We have in this paper taken a closer look at the model of electric field induced surface diffusion of adatoms including the van der Waals force as a contribution in formations of a mound on a surface. The dipole moment of an adatom is the sum of the surface induced dipole moment (which is constant) and the dipole moment due to electric field polarisation which depends on the strength and polarity of the electric field. The electric field is analytically modelled by a point charge over an infinite conducting flat surface. From this we calculate the force that cause adatoms to migrate. The calculated force is small for voltage used, typical 1 pN, but due to thermal vibration adatoms are hopping on the surface and even a small net force can be significant in the drift of adatoms. In this way we obtain a novel formula for a polarity dependent threshold voltage for mound formation on the surface for positive tip. Knowing the voltage of the pulse we then can calculate the radius of the formed mound. A threshold electric field for mound formation of about 2 V/nm is calculated. In addition, we found that van der Waals force is of importance for shorter distances and its contribution to the radial force on the adatoms has to be considered for distances smaller than 1.5 nm for commonly used voltages

    An interdisciplinary intervention for older Taiwanese patients after surgery for hip fracture improves health-related quality of life

    Get PDF
    Abstract Background The effects of intervention programs on health-related quality of life (HRQOL) of patients with hip fracture have not been well studied. We hypothesized that older patients with hip fracture who received our interdisciplinary intervention program would have better HRQOL than those who did not. Methods A randomized experimental design was used. Older patients with hip fracture (N = 162), 60 to 98 years old, from a medical center in northern Taiwan were randomly assigned to an experimental (n = 80) or control (n = 82) group. HRQOL was measured by the SF-36 Taiwan version at 1, 3, 6, and 12 months after discharge. Results The experimental group had significantly better overall outcomes in bodily pain (β = 9.38, p = 0.002), vitality (β = 9.40, p < 0.001), mental health (β = 8.16, p = 0.004), physical function (β = 16.01, p < 0.001), and role physical (β = 22.66, p < 0.001) than the control group at any time point during the first year after discharge. Physical-related health outcomes (physical functioning, role physical, and vitality) had larger treatment effects than emotional/mental- and social functioning-related health outcomes. Conclusions This interdisciplinary intervention program may improve health outcomes of elders with hip fracture. Our results may provide a reference for health care providers in countries using similar programs with Chinese/Taiwanese immigrant populations. Trial registration NCT01052636http://deepblue.lib.umich.edu/bitstream/2027.42/78259/1/1471-2474-11-225.xmlhttp://deepblue.lib.umich.edu/bitstream/2027.42/78259/2/1471-2474-11-225.pdfPeer Reviewe

    Necdin Controls Proliferation of White Adipocyte Progenitor Cells

    Get PDF
    White adipose tissues are composed mainly of white fat cells (adipocytes), which play a key role in energy storage and metabolism. White adipocytes are terminally differentiated postmitotic cells and arise from their progenitor cells (preadipocytes) or mesenchymal stem cells residing in white adipose tissues. Thus, white adipocyte number is most likely controlled by the rate of preadipocyte proliferation, which may contribute to the etiology of obesity. However, little is known about the molecular mechanisms that regulate preadipocyte proliferation during adipose tissue development. Necdin, which is expressed predominantly in postmitotic neurons, is a pleiotropic protein that possesses anti-mitotic and pro-survival activities. Here we show that necdin functions as an intrinsic regulator of white preadipocyte proliferation in developing adipose tissues. Necdin is expressed in early preadipocytes or mesenchymal stem cells residing in the stromal compartment of white adipose tissues in juvenile mice. Lentivirus-mediated knockdown of endogenous necdin expression in vivo in adipose tissues markedly increases fat mass in juvenile mice fed a high-fat diet until adulthood. Furthermore, necdin-null mutant mice exhibit a greater expansion of adipose tissues due to adipocyte hyperplasia than wild-type mice when fed the high-fat diet during the juvenile and adult periods. Adipose stromal-vascular cells prepared from necdin-null mice differentiate in vitro into a significantly larger number of adipocytes in response to adipogenic inducers than those from wild-type mice. These results suggest that necdin prevents excessive preadipocyte proliferation induced by adipogenic stimulation to control white adipocyte number during adipose tissue development

    Enhanced electrochemical reduction of hydrogen peroxide by Co3O4 nanowire electrode

    Get PDF
    Crystalline Co3O4 nanowire arrays with different morphologies grown on Ni foam were investigated by varying the reaction temperature, the concentration of precursors, and reaction time. The Co3O4 nanowires synthesized under typical reaction condition had a diameter range of approximately 500–900 nm with a length of 17 µm. Electrochemical reduction of hydrogen peroxide (H2O2) of the optimized Co3O4 nanowire electrode was studied by cyclic voltammetry. A high current density of 101.8 mA cm−2 was obtained at −0.4 V in a solution of 0.4 M H2O2 and 3.0 M NaOH at room temperature compared to 85.8 mA cm−2 at −0.35 V of the Co3O4 nanoparticle electrode. Results clearly indicated that the Ni foam supported Co3O4 nanowire electrode exhibited superior catalytic activity and mass transport kinetics for H2O2 electrochemical reduction

    Crystal structure of the CusBA heavy-metal efflux complex of Escherichia coli

    Get PDF
    Gram-negative bacteria, such as Escherichia coli, expel toxic chemicals via tripartite efflux pumps spanning both the inner and outer membranes. The three parts are: 1) a membrane fusion protein connecting 2) a substrate-binding inner membrane transporter to 3) an outer membrane-anchored channel in the periplasmic space. A crystallographic model of this tripartite efflux complex has been unavailable simply because co-crystallization of different components of the system has proven to be extremely difficult. We previously described the crystal structures of both the inner membrane transporter CusA1 and membrane fusion protein CusB2 of the CusCBA efflux system3,4 from E. coli. We here report the co-crystal structure of the CusBA efflux complex, revealing the trimeric CusA efflux pump interacts with six CusB protomers at the upper half of the periplasmic domain. These six CusB molecules form a channel extending contiguously from the top of the pump. The affinity of the CusA and CusB interaction was found to be in the micromolar range. Finally, we predicted a three-dimensional structure of the trimeric CusC outer membrane channel, and develop a model of the tripartite efflux assemblage. This CusC3-CusB6-CusA3 model presents a 750 kDa efflux complex spanning the entire bacterial cell envelope to export Cu(I)/Ag(I) ions

    Characterization of the Psychological, Physiological and EEG Profile of Acute Betel Quid Intoxication in Naïve Subjects

    Get PDF
    Betel quid use and abuse is wide spread in Asia but the physiological basis of intoxication and addiction are unknown. In subjects naïve to the habit of betel quid intoxication, the psychological and physiological profile of intoxication has never been reported. We compared the effect of chewing gum or chewing betel quid, and subsequent betel quid intoxication, on psychological assessment, prospective time interval estimation, numerical and character digit span, computerized 2 choice tests and mental tasks such as reading and mathematics with concurrent monitoring of ECG, EEG and face temperature in healthy, non-sleep deprived, male subjects naïve to the habit of chewing betel quid. Betel quid intoxication, dose dependently induced tachycardia (max 30 bpm) and elevated face temperature (0.7°C) (P<0.001) above the effects observed in response to chewing gum (max 12 bpm and 0.3°C) in 12 subjects. Gross behavioral indices of working memory such as numerical or character digit span in 8 subjects, or simple visual-motor performance such as reaction speed or accuracy in a two choice scenario in 8 subjects were not affected by betel quid intoxication. Betel quid intoxication strongly influenced the psychological aspects of perception such as slowing of the prospective perception of passage of a 1 minute time interval in 8 subjects (P<0.05) and perceived increased arousal (P<0.01) and perceived decreased ability to think (P<0.05) in 31 subjects. The EEG spectral profile recorded from mental states associated with open and closed eyes, and mental tasks such as reading and eyes closed mental arithmetic were significantly modified (P<0.05) relative to chewing gum by betel quid intoxication in 10 subjects. The prevalence of betel quid consumption across a range of social and work settings warrants greater investigation of this widespread but largely under researched drug
    • …
    corecore