176 research outputs found

    Preparation for an International Sport Event: The Promotional Strategies of 2009 Kaohsiung World Games

    Get PDF
    This study presented administrative and marketing-related information on Kaohsiung City’s preparation for the 2009 World Games. The presented information was allocated through an extensive literature review on secondary sources, personal interviews, and observations from fall of 2008 to summer of 2009. Promotional strategies and activities, projected financial and sales data, reports on constructions, and issues and challenges related to the Games were further analyzed. The study further discussed the “not-for-profit” approach that was practiced by many East Asian Countries to gain international recognition and promote patriotism while hosting a major sport event

    Computational image analysis of guided acoustic waves enables rheological assessment of sub-nanoliter volumes

    Get PDF
    We present a method for the computational image analysis of high frequency guided sound waves based upon the measurement of optical interference fringes, produced at the air interface of a thin film of liquid. These acoustic actuations induce affine deformations in the liquid, creating a lensing effect that can be readily observed using a simple imaging system. We exploit this effect to measure and analyze the spatio-temporal behavior as the acoustic wave interacts with the liquid. We also show that, by measuring the dynamics of the relaxation processes of these deformations when actuation ceases, we are able to determine the liquid's viscosity using just a lens-free optical sensor and a simple disposable biochip. Contrary to all other acoustic-based techniques in rheology, our measurements do not require monitoring of the wave parameters to obtain quantitative values for fluid viscosities, for sample volumes as low as 200 pL. We envisage that the proposed methods could enable high throughput, chip-based, reagent-free rheological studies within very small samples

    Cost-effective priorities for the expansion of global terrestrial protected areas: Setting 2 post-2020 global and national targets

    Get PDF
    Biodiversity loss is a social and ecological emergency, and calls have been made for the global expansion of protected areas (PAs) to tackle this crisis. It is unclear, however, where best to locate new PAs to protect biodiversity cost-effectively. To answer this question, we conducted a spatial meta-analysis by overlaying seven global biodiversity templates to identify Conservation Priority Zones (CPZs). These are then combined with Low Human Impact Areas (LIAs) to identify Cost-Effective Zones for PA designation (CEZs). CEZs cover around 38% of global terrestrial area, of which only 24% is currently covered by existing PAs. To protect more CEZs, we propose three scenarios with conservative, moderate and ambitious targets, which aim to protect 19%, 26% and 43% of global terrestrial area, respectively. These three targets are set for each Convention on Biological Diversity (CBD) party with spatially-explicit CEZs identified, providing valuable decision support for the post-2020 global biodiversity framework

    Directed Evolution of a Lysosomal Enzyme with Enhanced Activity at Neutral pH by Mammalian Cell-Surface Display

    Get PDF
    SummaryHuman β-glucuronidase, due to low intrinsic immunogenicity in humans, is an attractive enzyme for tumor-specific prodrug activation, but its utility is hindered by low activity at physiological pH. Here we describe the development of a high-throughput screening procedure for enzymatic activity based on the stable retention of fluorescent reaction product in mammalian cells expressing properly folded glycoproteins on their surface. We utilized this procedure on error-prone PCR and saturation mutagenesis libraries to isolate β-glucuronidase tetramers that were up to 60-fold more active (kcat/Km) at pH 7.0 and were up to an order of magnitude more effective at catalyzing the conversion of two structurally disparate glucuronide prodrugs to anticancer agents. The screening procedure described here can facilitate investigation of eukaryotic enzymes requiring posttranslational modifications for biological activity

    Cellphone-Based Hand-Held Microplate Reader for Point-of-Care Testing of Enzyme-Linked Immunosorbent Assays

    Get PDF
    Standard microplate based enzyme-linked immunosorbent assays (ELISA) are widely utilized for various nanomedicine, molecular sensing, and disease screening applications, and this multiwell plate batched analysis dramatically reduces diagnosis costs per patient compared to nonbatched or nonstandard tests. However, their use in resource-limited and field-settings is inhibited by the necessity for relatively large and expensive readout instruments. To mitigate this problem, we created a hand-held and cost-effective cellphone-based colorimetric microplate reader, which uses a 3D-printed optomechanical attachment to hold and illuminate a 96-well plate using a light-emitting-diode (LED) array. This LED light is transmitted through each well, and is then collected via 96 individual optical fibers. Captured images of this fiber-bundle are transmitted to our servers through a custom-designed app for processing using a machine learning algorithm, yielding diagnostic results, which are delivered to the user within ∼1 min per 96-well plate, and are visualized using the same app. We successfully tested this mobile platform in a clinical microbiology laboratory using FDA-approved mumps IgG, measles IgG, and herpes simplex virus IgG (HSV-1 and HSV-2) ELISA tests using a total of 567 and 571 patient samples for training and blind testing, respectively, and achieved an accuracy of 99.6%, 98.6%, 99.4%, and 99.4% for mumps, measles, HSV-1, and HSV-2 tests, respectively. This cost-effective and hand-held platform could assist health-care professionals to perform high-throughput disease screening or tracking of vaccination campaigns at the point-of-care, even in resource-poor and field-settings. Also, its intrinsic wireless connectivity can serve epidemiological studies, generating spatiotemporal maps of disease prevalence and immunity

    Dual Supramolecular Nanoparticle Vectors Enable CRISPR/Cas9-Mediated Knockin of Retinoschisin 1 Gene-A Potential Nonviral Therapeutic Solution for X-Linked Juvenile Retinoschisis.

    Get PDF
    The homology-independent targeted integration (HITI) strategy enables effective CRISPR/Cas9-mediated knockin of therapeutic genes in nondividing cells in vivo, promising general therapeutic solutions for treating genetic diseases like X-linked juvenile retinoschisis. Herein, supramolecular nanoparticle (SMNP) vectors are used for codelivery of two DNA plasmids-CRISPR-Cas9 genome-editing system and a therapeutic gene, Retinoschisin 1 (RS1)-enabling clustered regularly interspaced short palindromic repeats (CRISPR)-associated protein 9 (CRISPR/Cas9) knockin of the RS1 gene with HITI. Through small-scale combinatorial screenings, two SMNP vectors, with Cas9 and single guide RNA (sgRNA)-plasmid in one and Donor-RS1 and green fluorescent protein (GFP)-plasmid in the other, with optimal delivery performances are identified. These SMNP vectors are then employed for CRISPR/Cas9 knockin of RS1/GFP genes into the mouse Rosa26 safe-harbor site in vitro and in vivo. The in vivo study involves intravitreally injecting the two SMNP vectors into the mouse eyes, followed by repeated ocular imaging by fundus camera and optical coherence tomography, and pathological and molecular analyses of the harvested retina tissues. Mice ocular organs retain their anatomical integrity, a single-copy 3.0-kb RS1/GFP gene is precisely integrated into the Rosa26 site in the retinas, and the integrated RS1/GFP gene is expressed in the retinas, demonstrating CRISPR/Cas9 knockin of RS1/GFP gene
    corecore