28 research outputs found

    Copernicus Global Land Cover Layers—Collection 2

    Get PDF
    In May 2019, Collection 2 of the Copernicus Global Land Cover layers was released. Next to a global discrete land cover map at 100 m resolution, a set of cover fraction layers is provided depicting the percentual cover of the main land cover types in a pixel. This additional continuous classification scheme represents areas of heterogeneous land cover better than the standard discrete classification scheme. Overall, 20 layers are provided which allow customization of land cover maps to specific user needs or applications (e.g., forest monitoring, crop monitoring, biodiversity and conservation, climate modeling, etc.). However, Collection 2 was not just a global up-scaling, but also includes major improvements in the map quality, reaching around 80% or more overall accuracy. The processing system went into operational status allowing annual updates on a global scale with an additional implemented training and validation data collection system. In this paper, we provide an overview of the major changes in the production of the land cover maps, that have led to this increased accuracy, including aligning with the Sentinel 2 satellite system in the grid and coordinate system, improving the metric extraction, adding better auxiliary data, improving the biome delineations, as well as enhancing the expert rules. An independent validation exercise confirmed the improved classification results. In addition to the methodological improvements, this paper also provides an overview of where the different resources can be found, including access channels to the product layer as well as the detailed peer-review product documentation

    Global land characterisation using land cover fractions at 100 m resolution

    Get PDF
    Currently most global land cover maps are produced with discrete classes, which express the dominant land cover class in each pixel, or a combination of several classes at a predetermined ratio. In contrast, land cover fraction mapping enables expressing the proportion of each pure class in each pixel, which increases precision and reduces legend complexity. To map land cover fractions, regression rather than classification algorithms are needed, and multiple approaches are available for this task. A major challenge for land cover fraction mapping models is data sparsity. Land cover fraction data is by its nature zero-inflated due to how common the 0% fraction is. As regression favours the mean, 0% and 100% fractions are difficult for regression models to predict accurately. We proposed a new solution by combining three models: a binary model determines whether a pixel is pure; if so, it is processed using a classification model; otherwise with a regression model. We compared multiple regression algorithms and implemented our proposed three-step model on the algorithm with the lowest RMSE. We further evaluated the spatial and per-class accuracy of the model and demonstrated a wall-to-wall prediction of seven land cover fractions over the globe. The models were trained on over 138,000 points and validated on a separate dataset of over 20,000 points, provided by the CGLS-LC100 project. Both datasets are global and aligned with the PROBA-V 100 m UTM grid. Results showed that the random forest regression model reached the lowest RMSE of 17.3%. Lowest MAE (7.9%) and highest overall accuracy (72% ± 2%) was achieved using random forest with our proposed three-model approach and median vote. This research proves that machine learning algorithms can be applied globally to map a wide variety of land cover fractions. Fraction mapping expresses land cover more precisely, and empowers users to create their own discrete maps using user-defined thresholds and rules, which enables customising the result for a diverse range of uses. The three-step approach is useful for addressing the zero-inflation issue and mapping 0% and 100% fractions more accurately, and thus has already been taken up in the operational production of global land cover fraction layers within the CGLS-LC100 project. Furthermore, this study contributes to the accuracy assessment of land cover fraction maps both thematically and spatially, and these methods could be taken up by future land cover fraction mapping efforts

    Addressing the need for improved land cover map products for policy support

    Get PDF
    The continued increase of anthropogenic pressure on the Earth’s ecosystems is degrading the natural environment and then decreasing the services it provides to humans. The type, quantity, and quality of many of those services are directly connected to land cover, yet competing demands for land continue to drive rapid land cover change, affecting ecosystem services. Accurate and updated land cover information is thus more important than ever, however, despite its importance, the needs of many users remain only partially attended. A key underlying reason for this is that user needs vary widely, since most current products – and there are many available – are produced for a specific type of end user, for example the climate modelling community. With this in mind we focus on the need for flexible, automated processing approaches that support on-demand, customized land cover products at various scales. Although land cover processing systems are gradually evolving in this direction there is much more to do and several important challenges must be addressed, including high quality reference data for training and validation and even better access to satellite data. Here, we 1) present a generic system architecture that we suggest land cover production systems evolve towards, 2) discuss the challenges involved, and 3) propose a step forward. Flexible systems that can generate on-demand products that match users’ specific needs would fundamentally change the relationship between users and land cover products – requiring more government support to make these systems a reality

    Thirty years of land cover and fraction cover changes over the Sudano-Sahel using landsat time series

    Get PDF
    Historical land cover maps are of high importance for scientists and policy makers studying the dynamic character of land cover change in the Sudano-Sahel, including anthropogenic and climatological drivers. Despite its relevance, an accurate high resolution record of historical land cover maps is currently lacking over the Sudano-Sahel. In this study, 30 m resolution historically consistent land cover and cover fraction maps are provided over the Sudano-Sahel for the period 1986–2015. These land cover/cover fraction maps are achieved based on the Landsat archive preprocessed on Google Earth Engine and a random forest classification/regression model, while historical consistency is achieved using the hidden Markov model. Using these historical maps, a multitude of variability in the dynamic Sudano-Sahel region over the past 30 years is revealed. On the one hand, Sahel-wide cropland expansion and the re-greening of the Sahel is observed in the discrete land cover classification. On the other hand, subtle changes such as forest degradation are detected based on the cover fraction maps. Additionally, exploiting the 30 m spatial resolution, fine-scale changes, such as smallholder or subsistence farming, can be detected. The historical land cover/cover fraction maps presented in this study are made available via an open-access platform

    Copernicus Global Land Service: Land Cover 100m: version 3 Globe 2015-2019: Validation Report

    Get PDF
    This Validation Report describes in detail the quality of the satellite-based 100m Land Cover product of the global component of the Copernicus Land Service. It includes assessments of yearly global land cover layers (2015-2019), assessment of change as well as comparison with the previous version using an independent validation dataset. The related Product User Manual is the starting point for the reader and summarizes all aspects of the product (algorithm, quality, contents, format, etc)

    Evaluation of ESA CCI prototype land cover map at 20m

    Get PDF
    In September 2017, the ESA CCI Land Cover Team released a prototype land cover (LC) map at 20 m resolution over Africa for the year 2016. This is the first LC map produced at such a high resolution covering an entire continent for the year 2016. To help improve the quality of this product, we have assessed its overall accuracy and identified regions where the map should be improved. We have compared the product against two independent datasets developed within the Copernicus Global Land Services (CGLS): a reference land cover dataset at a 10 m resolution, which has been used as training data to produce the LC map at 100 m over Africa for the year 2015 (http://land.copernicus.eu/global/products/lc); and an independent validation dataset at a 10 m resolution, which has been developed by CGLS for independent assessment of land cover maps at resolutions finer than 100 m. According to our estimates, overall accuracy of the African CCI LC at 20 m is approximately 65%. We have highlighted regions where the spatial distribution of such classes as shrubs, crops and trees should be improved before the map at 20 m could be used as input for research questions, e.g. conservation of biodiversity, crop monitoring and climate modelling
    corecore