9,639 research outputs found

    Spikes for the gierer-meinhardt system with many segments of different diffusivities

    Get PDF
    We rigorously prove results on spiky patterns for the Gierer-Meinhardt system with a large number of jump discontinuities in the diffusion coefficient of the inhibitor. Using numerical computations in combination with a Turing-type instability analysis, this system has been investigated by Benson, Maini and Sherratt

    Analysis of Subchondral Bone and Microvessels Using a Novel Vascular Perfusion Contrast Agent and Optimized Dual-Energy Computed Tomography

    Get PDF
    Osteoarthritis (OA), is a chronic debilitating disease that affects millions of individuals and is characterized by the degeneration of joint subchondral bone and cartilage. These tissue degenerations manifest as joint pain, limited range of joint motion, and overall diminished quality of life. Currently, the exact mechanism(s) and cause(s) by which OA initiates and progresses remain unknown. The multi-factorial complex nature of OA (i.e. age, diabetes, obesity, and prior injuries have all been shown to play a role in OA) contributes to the current lack of a cure or effective long-term treatment for OA. One re-emerging and interesting hypothesis revolves around the delicate homeostatic microvascular environment around the cartilage – an avascular tissue. The absence of blood vessels within cartilage stresses the importance of nutrient and oxygen delivery from the neighbouring synovium and subchondral bone. Currently, the effects of changes in the subchondral bone microvessel density on cartilage health remain unknown due to the difficulties in simultaneously studying dense bone and the associated small microvessels. Computed tomography (CT) is widely used in the diagnosis of OA, as the use of x-rays provide detailed images of the bone degeneration associated with OA. However, the study of microvessels using CT has been exceptionally difficult due to their small (\u3c 10 µm) size, lack of contrast from neighbouring soft tissues, and proximity to dense bone. The purpose of this thesis was to develop a novel dual-energy micro-computed tomography (DECT) compatible vascular perfusion contrast agent and the associated instrumentation to optimize DECT on pre-clinical, cone-beam micro-CT scanners. The combination of these two techniques would facilitate the simultaneous visualization and quantification of subchondral bone and microvessels within the bone underlining the cartilage (i.e. distal femoral epiphysis and proximal tibial epiphysis) of rats that have undergone an OA-induced surgery. Results gained from this study will further provide information into the role that microvessels may play in OA

    Spin Accumulation in the Extrinsic Spin Hall Effect

    Get PDF
    The drift-diffusion formalism for spin-polarized carrier transport in semiconductors is generalized to include spin-orbit coupling. The theory is applied to treat the extrinsic spin Hall effect using realistic boundary conditions. It is shown that carrier and spin diffusion lengths are modified by the presence of spin-orbit coupling and that spin accumulation due to the extrinsic spin Hall effect is strongly and qualitatively influenced by boundary conditions. Analytical formulas for the spin-dependent carrier recombination rates and inhomogeneous spin densities and currents are presented.Comment: 5 pages, 3 figure

    Automatic ECG artifact removal in the real-time SEMG recording system

    Get PDF
    The contaminated electrocardiography (ECG) is a big problem in the surface electromyography (SEMG) signal detection and analysis. The objective of the current study is to propose and validate an algorithm for the automated feature cognition and identification for eliminating ECG artifact from the raw SEMG signals. The utilization of Independent Component Analysis (ICA) method is to decompose the raw SEMG signals into individual independent source components. After that, some of the independent source components with the characteristics of ECG artifact were detected by the automated identification algorithm and thereafter eliminated. The sensitivity and specificity of the algorithm for distinguishing ECG source components from independent source components are 100% and 99% respectively. The automated identification algorithm exhibits the prominent performance of recognition for ECG artifact and can be considered reliable and effective.published_or_final_versio

    On-line adaptive chaotic demodulator based on radial-basis-function neural networks

    Get PDF
    PACS number(s): 05.45.Vx, 84.35.+iAuthor name used in this publication: Chi K. Tse2000-2001 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe

    Glass-Like Heat Conduction in High-Mobility Crystalline Semiconductors

    Full text link
    The thermal conductivity of polycrystalline semiconductors with type-I clathrate hydrate crystal structure is reported. Ge clathrates (doped with Sr and/or Eu) exhibit lattice thermal conductivities typical of amorphous materials. Remarkably, this behavior occurs in spite of the well-defined crystalline structure and relatively high electron mobility (100cm2/Vs\sim 100 cm^2/Vs). The dynamics of dopant ions and their interaction with the polyhedral cages of the structure are a likely source of the strong phonon scattering.Comment: 4 pages, 3 postscript figures, to be published, Phys. Rev. Let
    corecore