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On-line adaptive chaotic demodulator based on radial-basis-function neural networks
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Chaotic modulation is a useful technique for spread spectrum communication. In this paper, an on-line
adaptive chaotic demodulator based on a radial-basis-function~RBF! neural network is proposed and designed.
The demodulator is implemented by an on-line adaptive learning algorithm, which takes advantage of the good
approximation capability of the RBF network and the tracking ability of the extended Kalman filter. It is
demonstrated that, provided the modulating parameter varies slowly, spread spectrum signals contaminated by
additive white Gaussian noise in a channel can be tracked in a time window, and the modulating parameter,
which carries useful messages, can be estimated using the least-square fit. The Henon map is chosen as the
chaos generator. Four test message signals, namely, square-wave, sine-wave, speech and image signals, are
used to evaluate the performance. The results verify the ability of the demodulator in tracking the dynamics of
the chaotic carrier as well as retrieving the message signal from a noisy channel.@S1063-651X~00!15911-2#
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I. INTRODUCTION

Chaotic dynamical systems, characterized by quickly
caying correlation functions and broadband power spec
provide a rich mechanism for spread spectrum~SS! signal
generation and transmission. Since Yamada and Fujis
@1,2# and Pecora and Carroll@3,4# demonstrated the synchro
nizability of coupled chaotic systems, there has been gr
ing interest in making use of chaos to transmit message
nals. Chaotic communication can be considered as a sp
spectrum communication, which spreads a message s
into a much wider bandwidth in comparison with the me
sage signals. The message signal is then retrieved at th
ceiving end by coherent or noncoherent despreading and
modulation.

A number of chaotic communication schemes have b
proposed, such aschaos masking, chaos shift keying, and
chaotic modulation.In chaos masking@5,6#, a message sig
nal with a smaller amplitude in comparison with the chao
carriers is added to the chaotic carrier, then an identical c
otic system included at the receiver is used to ‘‘filter’’ o
the message signal. This approach suffers from the disad
tage that distortion and noise introduced by the channel
indistinguishable from the signal. Furthermore, if the amp
tude of the signal is too large relative to the carrier’s, sy
chronization cannot be maintained. In chaos shift key
~CSK! @7,8#, a message signal is encoded by transmitting
chaotic signal for a binary signal ‘‘1’’ and another chao
signal for ‘‘0.’’ These two chaotic signals, with similar sta
tistical properties, come from two different systems~or the
same system with different systematic parameters!. For ex-
ample, a binary message can be transmitted by switch
between two chaotic attractors. At the receiving end,
message signal can be extracted by coherent and noncoh
demodulation technique. The main disadvantage of ch
shift keying is the need for resynchronization when symb
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change, giving poor bandwidth efficiency. Finally, in chao
modulation@9–11#, the message signal is injected into a ch
otic system as a bifurcation ‘‘parameter,’’ with the range
the bifurcation parameter chosen to guarantee motion
chaotic region. The main advantage of the chaotic modu
tion scheme is that it does not require any code synchr
zation, which is necessary in traditional SS communicat
systems with coherent demodulation techniques. The cru
design factor is, however, the retrieval of the bifurcation p
rameter variation from the receiving SS signal which may
distorted by channel noise. The main purpose of this pape
to propose and realize an effective approach for chaotic
modulation.

Because of their ability in modeling any arbitrary nonli
ear real-valued map defined on compact real sets@12#, the
radial-basis-function~RBF! neural networks have been em
ployed for the identification of nonlinear dynamical system
@13–16#. In this paper, we specifically describe an on-li
adaptive demodulator for a chaotic modulation communi
tion system based on an RBF network. This demodulator
adaptively retrieve message signals from receiving SS
nals, which are contaminated by channel noise. Two assu
tions are made in our design. Firstly, the transmitter’s para
eters vary slowly with time, so that the modulation syste
included at the transmitter can be seen as an autonom
system in a time interval. Secondly, the communicat
channel is distorted by additive white Gaussian no
~AWGN!. The paper is organized as follows. In the ne
section we give a brief review of chaotic modulation a
demodulation. In Sec. III, a Henon-map based demodula
process is formulated. Using an RBF network with an ad
tive learning algorithm, a new demodulator for extracti
message signals from receiving signals is proposed in S
IV. Simulation results are presented in Sec. V for verific
tion. Some remarks regarding practical implementation
included in Sec. VI.

II. REVIEW OF CHAOTIC MODULATION

Recently, a number of schemes for chaotic modulat
communication systems have been proposed. Corron
©2001 The American Physical Society02-1
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Hahs @17# proposed a drive-response~master-slave! based
chaotic modulation communication system for noise-f
channels. The demodulation task was realized by a nonlin
filter. Another drive-response based demodulator that
operate under a noise-free channel was also suggeste
Sharma and Poonacha@18#, which is based on minimization
of a cost function to estimate the transmitter’s parame
~i.e., messages! by using a gradient search algorithm. Anis
chenko and Pavlov@19# proposed a global reconstructio
approach for extracting bifurcation parameters of a class
chaotic modulation communication systems. Th
modulation-demodulation strategy was effective and relia
if, and only if, the motion equation of the transmitter can
rewritten in the following form:

dx1

dt
5x2 ,

dx2

dt
5x3 ,

dx3

dt
5x4 , . . . ,

dxE

dt
5 f ~X,G!,

~1!

whereX5@x1 ,x2 , . . . ,xE#T is the vector of equivalent stat
variables of a chaotic system, andG is the parameter vecto
of the system. When deriving Eq.~1! from the original set of
state variables of the transmitter, one usually encounters
gularity due to the existence of a zero denominator@19#.
Such singularity may lead to an undesired high-freque
component in the retrieved message signal. In Dedieu
Orgorzalek@20#, it was demonstrated that low-dimension
chaotic systems can be structurally identifiable via an o

FIG. 1. ~a! Autocorrelation function and~b! power spectrum of
x1 for the Henon map witha51.4 andb50.3.
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mization technique based on minimizing a chosen cost fu
tion, e.g., the second-order quasi-Newton algorithm@20#. In
the identification process, however, one has to design an
fective adaptive algorithms in order to avoid being trapped
local minima of the cost function during the optimal proce
In Müller and Elmirghani@21#, an artificial-neural-network-
based chaotic transmission strategy for the one-dimensi
logistic map was proposed. This approach employs a R
neural network with a fixed hidden unit number to appro
mate SS signals. However, in reconstructing a chaotic s
tem, there is no systematic method to select a suitable n
ber of hidden layer units, especially for high-dimension
chaotic systems@22,23#. Thus, the design of an appropria
RBF network for a general class of signals can be a com
cated task. In the following, this problem is addressed us
an on-line adaptive learning algorithm.

III. FORMULATION OF CHAOTIC MODULATION
AND DEMODULATION

Consider the Henon map

x1~k11!512ax1
2~k!1x2~k!, ~2!

x2~k11!5bx1~k!,

where a is the bifurcation parameter, andb is fixed at a
chosen value. The broadband feature of this map can be
fied by inspecting the autocorrelation function and pow
spectrum ofx1, whena is fixed or time varying. Ifa(k) is

FIG. 2. ~a! Autocorrelation function and~b! power spectrum of
x1 for the Henon map witha(k)51.3710.05 sin(k/5) andb50.3.
2-2
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ON-LINE ADAPTIVE CHAOTIC DEMODULATOR BASED . . . PHYSICAL REVIEW E63 026202
time varying, we choose its range to ensure chaotic mo
of the system. Figure 1 shows the autocorrelation funct
and power spectrum ofx1(k) when a is fixed at 1.4. Also,
Fig. 2 shows the autocorrelation function and power sp
trum of x1(k) whena is varied according to

a~k!51.3710.05 sin~k/5!, for k51,2,3, . . . . ~3!

We clearly see thatx1 is a highly uncorrelative signal an
occupies a broad spectrum, for both cases of fixed and ti
varying a. This property is desirable for SS communicatio
and hence we may choosex1 as a transmission signal wit
a(k) being the message signal.

In general, when the SS signalx1 passes through a prac
tical channel with AWGN, the receiving signaly(k) is

y~k!5x1~k!1h~k!, ~4!

whereh(k) is AWGN. One key function of the receiver is t
estimate or trackx1 from the receiving signaly(k). It has
been demonstrated@24# that for a low-dimensional noisy
chaotic attractor, noise can be removed or reduced by
jecting the chaotic attractor onto a higher-dimensional s
space. Such a subspace corresponds to the input space
RBF network in this paper, and by applying the Takens e
bedding theorem@25#, the dimension of this subspace is
low as 5 for the two-dimensional Henon attractor.

Specifically, in our approach,x1(k) will be estimated
from previously observed datay(k21),y(k22), . . . , y(k
2M ), whereM55. For brevity, we define

Z~1!5F y~M !

y~M21!

A

y~1!

G ,

FIG. 3. Block diagram representation of the chaotic modulat
communication system.
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Z~2!5F y@2~M11!21#

y@2~M11!22#

A

y~M12!

G ,•••,

Z~n!5F y@n~M11!21#

y@n~M11!22#

A

y@n~M11!2M #

G ,

whereZ(.) also stands for@z1 ,z2 , . . . ,zM#T. Note thatZ(n)
andy@n(M11)# together form one complete observation

To avoid confusion, we define an observation step as
duration for one complete observation, i.e., the time for re
ing (M11) data points. The problem is effectively reduc
to a one-step-ahead prediction, which can be formulated

x̂1@n~M11!#5h@Z~n!#, ~5!

where x̂1@n(M11)# is the estimate forx1@n(M11)# and
h(.) is a nonlinear function that can be realized by an R
neural network with an adaptive learning algorithm, as w
be proposed in the next section. Afterx1 is tracked, the sec-
ond equation in Eq.~2! can be used to estimatex2. We will
call (x̂1 ,x̂2) an estimate point pair, which is available eve
observation step, i.e., (M11) time steps.

To estimatea, we will make use of the first equation o
Eq. ~2!, which can be rearranged as

â~k!x̂1
2~k!215 x̂2~k!2 x̂1~k11!. ~6!

If a(k) is a constant within a window ofT1 observation steps
@i.e.,T1(M11) time steps#, then the Henon map can be se
as an autonomous system in the window, andâ can be esti-
mated by a least-squares-fit approach. Specifically, to finâ,
we use the following formula, which requiresL samples of
( x̂1 ,x̂2), at intervals ofT2 observation steps:

n

â5

(
n51

L

@$x̂1
2@nT2~M11!#2 x̂1

2%$x̂2@nT2~M11!#2 x̂1@nT2~M11!11#2 x̂21 x̂1%#

(
n51

L

$x̂1
2@nT2~M11!#2 x̂1

2%2

, ~7!
ate

on
where T1.LT2, and x̂1
2, x̂2, and x̂1 are, respectively, the

mean of estimated valuesx̂1
2@nT2(M11)#, x̂2@nT2(M

11)#, and x̂1@nT2(M11)11#, for n51,2, . . . ,L. Thus, in
LT2 observation steps, we will make available one estim
of a which is given by Eq.~7!.

A block diagram representation of this chaotic modulati
communication system is shown in Fig. 3.
2-3
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IV. ON-LINE ADAPTIVE LEARNING ALGORITHM
AND DEMODULATION

A. Overview of radial basis function neural network

The RBF network is a three-layer neural network,@13,26#
comprising an input layer, a hidden layer, and an out
layer, as shown in Fig. 4. The input layer consists ofM units,
connecting the input vector, for exampleZ(n) in our appli-
cation. Thei th input unit is directly connected to the outp
unit through a gain factorci , and the i th hidden unit is
connected to the output unit through a weight factorwi .
Effectively, the network performs a nonlinear mapping fro
the input spaceRM to the output spaceR, which is described
by

h@Z~n!#5w01(
i 51

M

cizi1(
i 51

N

wiw i@Z~n!#, ~8!

where w0 is the bias term. The functionw i : RM→R is
calledactivation functionand is given generally by

w i~Z!5w~ iZ2Qi i !, ~9!

whereQiPRM is known as the RBF center, andi•i denotes
a distance measurement. The Euclidean distance is ado
in this paper. Moreover, it has been shown@14# that the
choice of the nonlinear functionw is not critical to the per-
formance of the RBF network. Typical choices include,
instance, the thin plate spline functionx2 log(x), the Gauss-
ian function exp(2x2/s2), the multiquadric function (x2

1s2)1/2 and the inverse multiquadric function (x2

1s2)21/2. All these activation functions have proven goo
approximation capability regardless of their asymptotic pr
erties @14,26#. In the following, we will use the Gaussia
function

w i@Z~n!#5expS 2
iZ~n!2Qi~n!i2

2s i
2 D , ~10!

wheres i is the width of the Gaussian activation function
the i th hidden unit. By putting Eq.~10! in Eq. ~8!, we have

FIG. 4. RBF network configuration.
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h@Z~n!#5w01(
i 51

M

ci~n!zi1(
i 51

N

wi

3expS 2
iZ~n!2Qi~n!i2

2s i
2 D . ~11!

B. Network growth

The network begins with no hidden layer unit. As signay
is received, the network grows by creating new hidden un
and connecting the received data to the new hidden un
Precisely, given an observation$Z(n),y@n(M11)#%, the cri-
teria for creating a new hidden unit are

iZ~n!2Qnri.h1 , ~12!

e~n!5y@n~M11!#2h@Z~n!#.h2 , ~13!

e rms
n 5
A (

i 5n2T311

n

$y@ i ~M11!#2 x̂1@ i ~M11!#%2

T3
.h3 ,

~14!

whereQnr is the center of the hidden unit, which is neare
Z(n), T3 is the number of observation steps of a sliding d
window covering a number of latest observations for co
puting the output error, andh1 , h2 and h3 are thresholds.
Specifically,h15max(hmaxb

n,hmin), whereb is a decaying
factor, andhmax andhmin are the maximum and minimum o
h1. The first criterion essentially requires that the input
far away from stored patterns, the second criterion requ
that the error signal be significant, and the third criteri
specifies that within the sliding data window ofT3 observa-
tion steps, the root-mean-square~rms! error is also signifi-
cant. Now suppose the (N11)th hidden unit is to be adde
to the network. The parameters associated with this new
are assigned as follows:

wN115e~n!, ~15!

QN115Z~n!, ~16!

sN115riZ~n!2Qnri , ~17!

wherer (r,1) is an overlap factor that controls the exte
of overlap of the responses of the hidden units for an inp

C. Network update with extended Kalman filter

When the observation$Z(n),y@n(M11)#% does not sat-
isfy the criteria~12! to ~14!, no hidden unit will be added
and the extended Kalman filter~EKF! is then used to adjus
the parameters of the network. These parameters define
state vectorV of the network,

V5@c1 ,c2 , . . . ,cM ,w0 ,w1 ,Q1
T ,s1 , . . . ,wN ,QN

T ,sN#T.

~18!
2-4
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ON-LINE ADAPTIVE CHAOTIC DEMODULATOR BASED . . . PHYSICAL REVIEW E63 026202
Thus, we can write the gradient vector ofh(.) with respect to
V as

B@Z~n!#5
]h~ .!

]V
5F z1 ,z2 , . . . ,zM ,1,f1@Z~n!#,f1@Z~n!#

3
w1

s1
2 @Z~n!2Q1#T,f1@Z~n!#

3
w1

s1
3

iZ~n!2Q1i2, . . . ,fN@Z~n!#,

fN@Z~n!#
wN

sN
2 @Z~n!2QN#T,fN@Z~n!#

3
wN

sN
3

iZ~n!2QNi2G . ~19!

Now, denote the corrected error covariance matrix ofV at
instant (n21) by P(n21,n21). Then, the current estimat
of the error covariance matrix can be found from the follo
ing relation:

P~n,n21!5IP~n21,n21!I T5P~n21,n21!, ~20!

where I is an identity matrix. Other parameters used in t
EKF algorithm are the varianceR(n) of y as defined in Eq.
~4! and the Kalman gain vectorK(n), whose propagation
equations at instantn satisfy with

R~n!5B@Z~n!#P~n,n21!BT@Z~n!#1RD . ~21!

K~n!5P~n,n21!BT@Z~n!#/R~n!, ~22!

where RD is the variance of the measured noise. Hav
computedK(n), we can then update the state vector acco
ing to

V~n!5V~n21!1K~n!e~n!, ~23!

whereV(n) and V(n21) are, respectively, the state vect
of the present and previous observation step. Finally,
error covariance matrix is corrected according to

P~n,n!5$I 2K~n!B@Z~n!#%P~n,n21!1gI , ~24!

whereg is a small scaling factor introduced to improve t
RBF network’s adaptability to future input observations
the case of very rapid convergence of the EKF algorith
@12# Finally, it is worth noting that when a new unit is adde
to the hidden layer, the dimension ofP(n,n) changes, as can
be seen from the following relation:

P~n,n!5FP~n21,n21! 01

02 p0I G , ~25!

where01 and02 are zero matrices of appropriate dimensio
and p0 is a constant representing an estimate of the un
tainty in the initial values assigned to the network para
02620
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eters, which in this algorithm is also the variance of t
observation$Z(n),y@n(M11)#%.

D. Pruning of hidden units

As the network grows, the number of hidden units i
creases, and so will the computing complexity. Moreov
some added hidden units may subsequently end up con
uting very little to the network output. The network will onl
benefit from those hidden units in which the input patte
are close to the stored patterns. Thus, pruning redun
units in the hidden layer becomes imperative. We denote
weighted response of theith hidden unit for inputZ(n) as

ui~n!5wiw i , for i 51,2, . . . ,N. ~26!

Suppose the largest absolute output value for thenth input
Z(n) among all hidden unit’s weighted outputs isuumax(n)u.
Also denote the normalized output of theith hidden unit for
the nth input as

j i~n!5U ui~n!

umax~n!
U. ~27!

In order to keep the size of the network small, we need
remove hidden units when they are found noncontributi
Essentially, for each observation, each normalized ou
value j i(n) is evaluated. Ifj i(n) is less than a thresholdu
for T3 consecutive observations, then theith hidden unit
should be removed, thereby keeping the network size and
computing complexity to a minimum.

E. Summary of the flow of algorithm

Basically, the above adaptive algorithm aims to retriev
value of a for each time window ofT1 observation steps
Two types of estimation are performed by this algorithm.
one observation step@i.e., (M11) time steps#, an estimate of
(x1 ,x2) is produced. This reconstructs the SS signal. Th
in LT2 observation steps, an estimate ofa is produced. This
retrieves the message. Moreover, the latter estimation
quires knowledge of the former, and in practice the R
network needs a number of observation steps to converg
weights and coefficients. Thus, in our algorithm, we allow
subwindow ofT4 observation steps (T4,T1), during which
estimation ofa is omitted. In the remaining subwindow o
(T12T4) observation steps, estimation ofa is then per-
formed to retrieve the message signal.

Specifically, the purpose in the first subwindow ofT4 ob-
servation steps is mainly to train the network to track t
dynamics, and in the next subwindow of (T12T4) observa-
tion steps, the ‘‘trained’’ network estimatesx1 using

x̂1@nT2~M11!11#8h@Z8~n11!#, ~28!

x̂1@nT2~M11!12#8h@Z9~n11!#, ~29!

where
2-5
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Z8~n11!5F x̂1@nT2~M11!#

y@nT2~M11!21#

A

y@nT2~M11!2~M21!#

G ,

Z9~n11!5F x̂1@nT2~M11!11#

x̂1@nT2~M11!#

y@nT2~M11!21#

A

y@nT2~M11!2~M22!#

G , ~30!

and the least-squares-fit is used to retrieve the messaga,
i.e., using Eq.~7!. The following pseudocodes summarize t
demodulation algorithm:

initialize the networks,
for each message signal a(k)

for each observation$Z(n),y@n(M11)#% do
compute networks output subject to Eq. ~11!,
determine whether or not a hidden unit should be
added,

if conditions ~12! to ~14! hold
add a new hidden unit,
assign relevant parameters,
adjust covariance matrice ~25!,

else
adjust the networks parameters according to Eqs.
~18! to ~24!

endif;
check the criterion for pruning a hidden unit,
if j i(n),u for T3 continuous observations

delete the ith hidden unit,
reduce the network size,

endif;
if n>T4

estimate x1@nT2(M11)11# and x1@nT2(M11)
12# with the RBF network,
perform demodulation with Eq. ~7!,
endif;
end for;

end for.
In the next section, we will implement the above demod

lation algorithm in an RBF network and apply the network
extract messages from broadband signals.

V. COMPUTER SIMULATIONS AND EVALUATION

Four different kinds of message signals will be employ
to test the proposed demodulation scheme, namely, squ
wave, sine-wave, speech, and image signals. The squ
wave signal is defined by the following piecewise line
function:
02620
-

d
re-
re-
r

a~k!55
1.37, kP@1,551#

1.42, kP@552,1102#

1.35, kP@1103,1653#

1.39, kP@1654,2204#

1.32, kP@2205,2755#

1.36, kP@2756,3306#

1.41, kP@3307,3857#

. ~31!

The sine-wave signal is as defined in Eq.~3! for k51 to 200.
The speech signal used in the test contains a male sp
signal ‘‘CHAOS COMMUNICATIONS,’’ as shown in Fig.
5, which is sampled at 11 kHz and 8 bit precision. Final
the image signal is from an Einstein portrait with 1923213
pixels, each pixel having 256 gray levels, as shown in Fig
In this proposed demodulating algorithm, each message
nal a(k) is constant in a time window ofT1 observation
steps. For example, each pixel value of the image signa
constant in itsT1 observation steps, and each sampling va
of the speech signal is also constant in itsT1 observation
steps.

FIG. 5. A male speech wave form: ‘‘CHAOS COMMUNICA
TIONS,’’ sampled at 11 kHz and 8 bit precision.

FIG. 6. Einstein portrait (1923213 pixels!.
2-6
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In the simulation, the transmitted SS signal is control
to reach the required signal-to-noise ratio~SNR! value in the
AWGN channel. For the retrieved signal, the mean-squ
error ~MSE! is used to evaluate the demodulator’s perf
mance. The following definition for MSE is adopted.

MSE510 log10F 1

T5
(
n51

T5

@ â~n!2a~n!#2G , ~32!

whereT5 is the number of the sampled message signals
our simulation, the parameters of the RBF network and
EKF are assigned as follows:T15551, T255, T3540, T4
5250, L560, h250.05, h350.07, hmax52.0, hmin
50.02, r50.973, p0515.0, g50.01, b50.997, andu
50.001.

We will use the square-wave message example to il
trate a few important performance areas, namely, the e
propagation, the network growth profile, and the adapt
movement of the hidden units centers.

~1! For the square-wave message and an SNR of 20 d
the received SS signal, the error wave form ofx1 is shown in
Fig. 7, which shows that in the window of the firstT1 obser-
vation steps, the error is the largest among all subseq
windows ofT1 observation steps. This is because the tra
ing of the dynamics is mainly done in the first window.
each subsequent window ofT1 observation steps, it is foun
that the error signal in the subwindow of the firstT4 obser-
vation steps is larger than that in the rest of the window. T
subwindow from (T411) to T1 is, in fact, the estimation
window during which the message signal is evaluated
cording to Eq.~7!.

~2! Illustrated in Fig. 8 is the growth of the hidden laye
It can be seen that the variation of the number of hidd
units in the first window is most drastic. Specifically, in th
window of the firstT1 observation steps, the number of th
hidden units adaptively add and drop with time as well
with the input pattern. In the subsequent windows, the nu
ber of the hidden units varies with the input pattern ad
tively.

~3! Figure 9 shows the variation of the first and seco

FIG. 7. Error wave form ofx1 for the case of square-wav
message.
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components of the first unpruned hidden unit’s center vec
From this, we can again see that the first window experien
the most rapid change.

It should be clear that the RBF-based demodulator
track the time-varying chaotic system by adaptively adju
ing both the number and center positions of the hidden la
units. The message signal and retrieved message signa
shown in Fig. 10 and Fig. 11, for the cases of the squa
wave and sine-wave test messages, with SNR5 15dB. Also,
the retrieved speech signal and Einstein portrait are show
Fig. 12 and Fig. 13, respectively.

Finally, we measure the MSE performance for the t
message signals. Results are shown in Fig. 14, from wh
we can see that the MSE decreases as the channel SN
creases. At an SNR of 15dB, the MSE of the four retriev
signals are, respectively, –21.1dB, –19.1dB, –22.9dB,
–16.8dB for the square-wave, sine-wave, speech signal,
image signal.

FIG. 8. Number of hidden units showing growth profile for th
case of square-wave message.

FIG. 9. Variation of the first component~dotted line! and the
second component~solid line! of the first unpruned hidden unit’s
center.
2-7
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Remarks

It is of interest to note that the estimation of the parame
a(k) can be performed using direct computation based
Eq. ~2!, similar to the method described in Anishchenko a
Pavlov @19#. However, direct computation achieves reaso
able performance only when the noise level is very low. O
method shows significant improvement over direct compu
tion in the presence of noise. As a comparison, we pre
here the MSE’s corresponding to the above same exam
using the method of direct computation as in Anishchen
and Pavlov@19#. In brief, the method of direct computatio
@19# involves using the noisy data to solvea from Eq. ~2! at
each observation step. Then, the average value ofa over T1
observation steps gives an estimate for the message si
From Fig. 15, we note that when the SNR of the receiv
signal is 15dB, the MSE of the four retrieved signals a
69.5dB, 89.9dB, 139.2dB and 145.8dB for the square-wa
sine-wave, speech signal and image signal, respectiv
Thus, we can see the significant improvement that can
gained from using the proposed method, especially for ap
cations in noisy environment. In fact, at a high noise le
~low SNR!, the chaotic dynamics of Eq.~2! will be drasti-
cally altered, invalidating the conventional demodulation a

FIG. 11. Sine-wave signal~solid line! and retrieved sine-wave
signal ~dotted line, SNR515dB!.

FIG. 10. Square-wave signal~solid line! and retrieved square
wave signal~dotted line, SNR515dB!.
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proaches for parameter estimation@28#. It should be noted
that since our interest is to deal with noisy signals, the va
ance of the added random noise used in our pa
('1021) is much higher than that used in Anishchenko a
Pavlov @19# ('1025).

VI. DISCUSSION

In realizing chaotic communication systems, two areas
performance are important, namely, robustness to exte
perturbations~noise and parameter mismatches! and security,
which are known to be a paradox in communication w
chaos@27#.

The first one concerns with the system immunity agai
parameter mismatches and noise in the channel. In our
posed system, variation of the system parameter is explo
for transmitting messages, and resynchronization at the
ceiver ~which is sensitive to external perturnbations! is not
required. Hence, parameter mismatches do not present p
lems to our system, as they may do in other chaotic comm
nication systems.

The second area of performance concerns the securit
the system. In the chaotic modulation system under stu
the receiver is assumed to ‘‘know’’ the transmitter. This o

FIG. 13. Retrieved Einstein portrait~SNR515dB!.

FIG. 12. Retrieved speech signal (MSE5222.9dB, SNR
515dB!.
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ON-LINE ADAPTIVE CHAOTIC DEMODULATOR BASED . . . PHYSICAL REVIEW E63 026202
fers the basic level of security because, without knowled
of the kind of functions and parameter variation involved
the transmitter, it is almost impossible for an intruder to
cover the transmitted message. When the transmitte
‘‘known,’’ moreover, security becomes limited since an i
truder may be able to perform tracking and parameter e
mation through a different means, such as using
adaptive-control based method studied by Zhou and Lai@27#.
It should be noted that tracking in a highly noisy enviro
ment as studied in this paper is still a very difficult tas
making it nontrivial for an intruder to recover the messa
even with good knowledge of the transmitter@22,27#. Fur-
thermore, one may also achieve a greater level of securi
some cryptographic feature is incorporated in the modula
process. This, however, is beyond the scope of the pre
paper.

VII. CONCLUSION

In this paper, we have designed an on-line adaptive
modulator for recovering message signals that are trans
ted through chaotic carriers contaminated by additive wh

FIG. 14. MSE of retrieved source signals versus SNR using
proposed method.
z,

ir-

g

-

ys

02620
e

-
is

ti-
e

,
e

if
n
nt

e-
it-
e

Gaussian noise. The message is injected into a Henon-m
based transmitter system as variation of a bifurcation par
eter. The demodulation process essentially aims to reco
the embedded parameter variation. The essential compo
of the proposed demodulator is a radial-basis-function ne
network, which incorporates an adaptive learning algorit
to track the dynamics of the Henon map. The least-square
is used to estimate message signals. The purpose of the a
tive learning algorithm is to adaptively configure hidde
layer size and adjust the relevant parameters with an
tended Kalman filter algorithm. The system is tested w
square-wave, sine-wave, image, and speech signals se
as messages. Results have demonstrated that the demo
tor is capable of performing the required demodulation ta
for a noisy communication channel.
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