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On-line adaptive chaotic demodulator based on radial-basis-function neural networks
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Chaotic modulation is a useful technique for spread spectrum communication. In this paper, an on-line
adaptive chaotic demodulator based on a radial-basis-fun@BR) neural network is proposed and designed.
The demodulator is implemented by an on-line adaptive learning algorithm, which takes advantage of the good
approximation capability of the RBF network and the tracking ability of the extended Kalman filter. It is
demonstrated that, provided the modulating parameter varies slowly, spread spectrum signals contaminated by
additive white Gaussian noise in a channel can be tracked in a time window, and the modulating parameter,
which carries useful messages, can be estimated using the least-square fit. The Henon map is chosen as the
chaos generator. Four test message signals, namely, square-wave, sine-wave, speech and image signals, are
used to evaluate the performance. The results verify the ability of the demodulator in tracking the dynamics of
the chaotic carrier as well as retrieving the message signal from a noisy ch@t@$3-651X00)15911-2
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[. INTRODUCTION change, giving poor bandwidth efficiency. Finally, in chaotic

modulation[9—-11], the message signal is injected into a cha-

Chaotic dynamical systems, characterized by quickly deotic system as a bifurcation “parameter,” with the range of
caying correlation functions and broadband power spectrgh€ bifurcation parameter chosen to guarantee motion in a
provide a rich mechanism for spread spectr(89 signal qhaotlc region. The main advantage' of the chaotic modulq—
generation and transmission. Since Yamada and Fujisalgéor_' SChe"_‘e IS that it does ot require any code syn_chrc_ml-
[1,2] and Pecora and CarrdB,4] demonstrated the synchro- zation, whl_ch is necessary in trad_ltlonal SS Commumcatlo_n
nizability of coupled chaotic systems, there has been grow§y3t,ems with _coherent demodulat!on techmque;. Th? crucial
ing interest in making use of chaos to transmit message si 1esign factqr IS, however, the r.eF“e"a' of_the b|furcat|on pa-
nals. Chaotic communication can be considered as a spre ameter variation from the receving SS signal Wh'c.h may bg
spectrum communication, which spreads a message sign ||storted by channel_ noise. The main purpose of this Paper IS
into a much wider bandwidth in comparison with the mes-10 Propose and realize an effective approach for chaotic de-

sage signals. The message signal is then retrieved at the fgodulation. S . . .
ceiving end by coherent or noncoherent despreading and de- Because of their ab'l'ty in modeling any arbitrary nonlin-
modulation ear real-valued map defined on compact real fE? the

A number of chaotic communication schemes have beeﬁadiaI-basis-functior(RBF) neural networks have been em-
proposed, such ashaos maskingchaos shift keyingand ployed for the identification of nonlinear dynamical systems

chaotic modulationln chaos masking5,6], a message sig- [13_1@' In this paper, we specifi_cally desc_ribe an on-Ii_ne

nal with a smaller amplitude in comparison with the chaoticadapt've dergmdu(;ator forR%EhaOt'C T(ogirlrjl[at?n codmlmunlca—
carriers is added to the chaotic carrier, then an identical chglon system based on an network. This demodulator can
otic system included at the receiver is used to “filter” out adaptively retrieve message signals from receiving SS sig-

the message signal. This approach suffers from the disadvaﬂgls’ which are contaminated by channel noise. Two assump-

tage that distortion and noise introduced by the channel arkons are made inour design. Firstly, the transmitter’s param-

indistinguishable from the signal. Furthermore, if the ampIi-f':'ters vary slowly with time, so that the modulation system

tude of the signal is too large relative to the carrier's, Syn_mcluded at the transmitter can be seen as an autonomous

chronization cannot be maintained. In chaos shift keyingSyStem in a time interval. Secondly, the communication

: : - hannel is distorted by additive white Gaussian noise
(CSK) [7,8], a message signal is encoded by transmitting on . .
chaotic signal for a binary signal “1” and another chaotic AWGN). The paper is organized as follows. In the next

signal for “0.” These two chaotic signals, with similar sta- section we give a brief review of chaotic modulation and

tistical properties, come from two different systefas the demodulgtion. In Sec. lIl, a Henon-map based d_emodulation
same system with different systematic parameteFer ex- process is formulated. Using an RBF network with an adap-

ample, a binary message can be transmitted by switchin Ve Iearnln.g algorithm, a new de'modulf?ltor for extrqctlng
between two chaotic attractors. At the receiving end, thdnesSage signals from receiving signals is proposed in Sec.

message signal can be extracted by coherent and noncoher Xt Simulation results are p_resented_ In S_ec. v for vgrlﬂca-
demodulation technique. The main disadvantage of chadio"- Some remarks regarding practical implementation are

shift keying is the need for resynchronization when symbols'.nC|Uded in Sec. V.
Il. REVIEW OF CHAOTIC MODULATION

*Email address: fengjc@swnu.edn.cn Recently, a number of schemes for chaotic modulation
"Email address: cktse@eie.polyu.edu.hk communication systems have been proposed. Corron and
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FIG. 2. (a) Autocorrelation function andb) power spectrum of

FIG. 1. (a) Autocorrelation function an¢b) power spectrum of X, for the Henon map witta(k) =1.37+0.05 sink/5) andb=0.3.

Xy for the Henon map witla=1.4 andb=0.3. mization technique based on minimizing a chosen cost func-

Hahs[17] proposed a drive-respongeaster-slave based Elhon,.de.gil,f.thet.second—orderr] quaerewtoE algtorghm_]. In ¢
chaotic modulation communication system for noise-freef et'l encli|ca;_|on ;I)roq(teﬁs, .owe;/er,tone 'Ssbc') etS|gn acr; er
channels. The demodulation task was realized by a nonline fC |?/e adap 'er ﬁgorl rfns N order .oavg €ing Irappe n
filter. Another drive-response based demodulator that ca Ocﬁﬂurn'err"r:r? doE'I[meirCﬁfi;i[uznlﬁtga c:;;:ilggi;I-ﬁeouprtzlirlr-]r?e'sl\sg(rzliss.
operate under a noise-free channel was also suggested E-gsed chaotic trangmission ic,trate for the one-di ional
Sharma and Poonach&8], which is based on minimization " egy imensiona
of a cost function to estimate the transmitter’s parameterLOgIStIC map was_propqsed. .Th's appfoaCh employs a R.BF
(i.e., messagedy using a gradient search algorithm. Anish- neural netvyork with a fixed hldden unit number to approxI-
mate SS signals. However, in reconstructing a chaotic sys-

chenko and Pavloy19] proposed a global reconstruction . ; :
approach for extracting bifurcation parameters of a class Ogem, there is no systematic method to select a suitable num-

chaotic modulation ~communication  systems. Thisber of hidden layer units, especially for high-dimensional

modulation-demodulation strategy was effective and reliabléhgg té%ﬁi:il?osrzsysgﬁ;gﬁiatgseoﬂ‘essilggnnalos f c?n %%pgosglritp(?li-

if, and only if, the motion equation of the transmitter can be . . ) '
rewritten in the following form: cated task. In th_e foIIOW|r_lg, this p_roblem is addressed using
an on-line adaptive learning algorithm.

dxq dxo dXg dxg
szz, sza, W:X‘l' cees W:f(X,F), IIl. FORMULATION OF CHAOTIC MODULATION
(1) AND DEMODULATION
T . Consider the Henon map

whereX=[x4,X,, ... Xg]|' is the vector of equivalent state
variables of a chaotic system, ahdis the parameter vector X1(k+1)=1—ax3(k)+x,(k), 2)
of the system. When deriving E@L) from the original set of
state variables of the transmitter, one usually encounters sin- Xo(k+1)=bx;(Kk),

gularity due to the existence of a zero denomindtt®)].

Such singularity may lead to an undesired high-frequencyhere a is the bifurcation parameter, ardis fixed at a
component in the retrieved message signal. In Dedieu anchosen value. The broadband feature of this map can be veri-
Orgorzalek[20], it was demonstrated that low-dimensional fied by inspecting the autocorrelation function and power
chaotic systems can be structurally identifiable via an optispectrum ofx,, whena is fixed or time varying. Ifa(k) is
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FIG. 3. Block diagram representation of the chaotic modulation

communication system. y[In(M+1)—1]

time varying, we choose its range to ensure chaotic motion y[n(M+1)—-2]
of the system. Figure 1 shows the autocorrelation function Z(n)= . )
and power spectrum of;(k) whena is fixed at 1.4. Also, '
Fig. 2 shows the autocorrelation function and power spec- y[n(M+1)-M]
trum of x;(k) whena is varied according to
) whereZ(.) also stands fofz;,z;, . . . ,zy]". Note thatZ(n)
a(k)=1.37+0.05sirtk/5), for k=1,23.... (3  andy[n(M+1)] together form one complete observation.

We clearly see thax, is a highly uncorrelative signal and To avoid confusion, we define an observation step as the
occupies a broad spectrum, for both cases of fixed and timeduration for one complete observation, i.e., the time for read-
varying a. This property is desirable for SS communication,ing (M + 1) data points. The problem is effectively reduced
and hence we may choosg as a transmission signal with to a one-step-ahead prediction, which can be formulated as
a(k) being the message signal.

In general, when the SS signeg| passes through a prac- x[n(M+1)]=h[Z(n)], (5)
tical channel with AWGN, the receiving signg(k) is

YK =x,(K) + 7(K), 4) Wher_eg(l[n(M_ﬂL 1)] is the estimate fox,[n(M+1)] and
h(.) is a nonlinear function that can be realized by an RBF
wheren(k) is AWGN. One key function of the receiver is to neural network with an adaptive learning algorithm, as will
estimate or track,; from the receiving signay(k). It has  be proposed in the next section. After is tracked, the sec-
been demonstratefR4] that for a low-dimensional noisy ond equation in Eq(2) can be used to estimaig. We will
chaotic attractor, noise can be removed or reduced by prazall (x;,x,) an estimate point pair, which is available every
jecting the chaotic attractor onto a higher-dimensional subpbservation step, i.e.M+1) time steps.
space. Such a subspace corresponds to the input space of anTo estimatea, we will make use of the first equation of
RBF network in this paper, and by applying the Takens em£q. (2), which can be rearranged as
bedding theoreni25], the dimension of this subspace is as o A .
low as 5 for the two-dimensional Henon attractor. a(k)xi(k) —1=X5(k) —x4(k+1). (6)
Specifically, in our approachx,(k) will be estimated

from previously observed data(k—1),y(k—2), ..., y(k ) o ) .
—M), whereM =5. For brevity, we define If a(k) is a constant within a window dff; observation steps

[i.e., T{(M+1) time step§ then the Henon map can be seen

y(yl\ill\ﬁ)l) as an autonomous system in the window, ancan be e§ti—
Z(1)= . , mated by a Ieast-s_quares-fit appr(_)ach. Sp_ecifically, todijnd
: we use the following formula, which requiréssamples of

y(1) (X1,%,), at intervals ofT, observation steps:

L . .
n; [{XZ[NTo(M +1)]=XZHX [ NTo(M +1)]= X4 [N To(M + 1) + 1]— Xp+ X3} ]

a=

L _ ’ (7)
2 {nTo(M+1)] =53

where T,>LT,, and X3, X,, and X, are, respectively, the L T2 observation steps, we will make available one estimate
f . lues? ~ of a which is given by Eq(7).

mean of estimated valuesi[nTy(M+1)], X [nTy(M A block diagram representation of this chaotic modulation

+1)], andxs[nT,(M+1)+1], forn=1,2,... L. Thus, in communication system is shown in Fig. 3.
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B. Network growth

The network begins with no hidden layer unit. As sigpal
is received, the network grows by creating new hidden units
Input layer Hidden layer Output layer and connecting the received data to the new hidden units.
Precisely, given an observati¢a(n),y[n(M +1)]}, the cri-
teria for creating a new hidden unit are

FIG. 4. RBF network configuration.

IV. ON-LINE ADAPTIVE LEARNING ALGORITHM 1Z(n) = Quell> 71, (12
AND DEMODULATION

A. Overview of radial basis function neural network e(n)=y[n(M+1)]—h[Z(n)]>ns,, (13

The RBF network is a three-layer neural netwqd3,26|
comprising an input layer, a hidden layer, and an output " ) n )
layer, as shown in Fig. 4. The input layer consist$/ofinits, i=n;'3+1 {yliM+1)]=x[i(M+1)]}
connecting the input vector, for exampt€n) in our appli- €= T > 73,
cation. Theith input unit is directly connected to the output 3
unit through a gain factoc;, and theith hidden unit is (14
connected to the output unit through a weight factor.
Effectively, the network performs a nonlinear mapping from
the input spac&M to the output space®, which is described

whereQ,, is the center of the hidden unit, which is nearest
Z(n), T4 is the number of observation steps of a sliding data
window covering a number of latest observations for com-

by puting the output error, ang;, 7, and n; are thresholds.
M N Specifically, 71 =max(#@ma8", 7min)» Where is a decaying
h[Z(N)]=Wo+ >, cizi+ 2, Wie[Z(n)], (8)  factor, andspay and 7, are the maximum and minimum of
=1 =1

71. The first criterion essentially requires that the input be
far away from stored patterns, the second criterion requires
where w, is the bias term. The functiop;: "M —% is  that the error signal be significant, and the third criterion
called activation functionand is given generally by specifies that within the sliding data window ©f observa-
tion steps, the root-mean-squdrens) error is also signifi-
cant. Now suppose theN(# 1)th hidden unit is to be added
¢i(2)=o¢(|Z2=Qil), 9  to the network. The parameters associated with this new unit
are assigned as follows:

whereQ; e ®M is known as the RBF center, aftd| denotes

a distance measurement. The Euclidean distance is adopted Wy 1= €(n), (15
in this paper. Moreover, it has been sho\i¥] that the

choice of the nonlinear functiog is not critical to the per- Qn+1=2(N), (16
formance of the RBF network. Typical choices include, for

instance, the thin plate spline functior log(x), the Gauss- on+1=pl1Z(N)—Qull, (17

ian function exptx?o?), the multiquadric function X?

2\1/2 H H : H .
+0%)" and the inverse multiquadric functionxY  \herep (p<1) is an overlap factor that controls the extent

+0?)~ Y2 All these activation functions have proven good of overlap of the responses of the hidden units for an input.
approximation capability regardless of their asymptotic prop-

erties[14,26. In the following, we will use the Gaussian , ,
C. Network update with extended Kalman filter

function
When the observatiofiZ(n),y[n(M +1)]} does not sat-
) isfy the criteria(12) to (14), no hidden unit will be added,
c,o-[Z(n)]:exp( B 1Z(n) = Qi(n)] ) (10) and the extended Kalman filtéEKF) is then used to adjust
: 20i2 ' the parameters of the network. These parameters define the
state vectolV of the network,
whereo; is the width of the Gaussian activation function of V=[c4,C,, ... ,Cyu ,Wo,wl,QI,al, ce Wy ,QL,O’N]T.
theith hidden unit. By putting Eq(10) in Eq. (8), we have (18)
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Thus, we can write the gradient vectortdf ) with respectto  eters, which in this algorithm is also the variance of the
V as observation{Z(n),y[n(M +1)]}.

ah(. . . :
B[Z(n)]= —ai,) =| 21,22, - 2w, L[ Z(N)], [ Z(M)] D. Pruning of hidden units
As the network grows, the number of hidden units in-
W creases, and so will the computing complexity. Moreover,
X—;[Z(n)—Ql]T,qbl[Z(n)] some added hidden units may subsequently end up contrib-
o1 uting very little to the network output. The network will only
benefit from those hidden units in which the input patterns
Wy 2 are close to the stored patterns. Thus, pruning redundant
X;HZ(H)—Qlﬂ v ¢N[Z(N)], units in the hidden layer becomes imperative. We denote the
! weighted response of théh hidden unit for inpuZ(n) as

¢N[Z(n)]w—’2\|[Z(n)—QN]T,¢N[Z(n)] u(n)=w,¢;, fori=12,...N. (26)
ON

Suppose the largest absolute output value forrtheinput
xvﬂﬂz(n)—QN”Z _ (199  Z(n) among all hidden unit's weighted outputs|ign(N)|.
oy Also denote the normalized output of the hidden unit for
the nth input as
Now, denote the corrected error covariance matriX/odt

instant (—1) by P(h—1n—1). Then, the current estimate u,(n)
of the error covariance matrix can be found from the follow- &(n)= : . (27
ing relation: Umax 1)

P(n,n—1)=IP(n—1n-1)I"=P(n—1n-1), (20 In order to keep the size of the network small, we need to
remove hidden units when they are found noncontributing.
wherel is an identity matrix. Other parameters used in thegssentially, for each observation, each normalized output
EKF algorithm are the variandg(n) of y as defined in Eq. value & (n) is evaluated. Ifg;(n) is less than a threshold
(4) and the Kalman gain vectdf(n), whose propagation for T, consecutive observations, then tik hidden unit
equations at instarmt satisfy with should be removed, thereby keeping the network size and the

: lexi " _
R(M=B[Z(MP(n.n—1BTZ(N]+Ry.  (21) computing complexity to a minimum

K(n)=P(n,n—1)B"[Z(n)]/R(n), (22 E. Summary of the flow of algorithm
. . . . Basically, the above adaptive algorithm aims to retrieve a
where R, is the variance of the measured noise. Having, 51,6 ofa for each time window off, observation steps.
computedK(n), we can then update the state vector accordr,q types of estimation are performed by this algorithm. In
Ing to one observation stdqpe., (M + 1) time step§ an estimate of
- X1,X,) is produced. This reconstructs the SS signal. Then,

Vim=vin—h+Knen), 23 i(n lLTZZ)obsFérvation steps, an estimateaois producgd. This

whereV(n) andV(n—1) are, respectively, the state vector retrieves the message. Moreover, the latter estimation re-

of the present and previous observation step. Finally, théuires knowledge of the former, and in practice the RBF
error covariance matrix is corrected according to network needs a number of observation steps to converge its

weights and coefficients. Thus, in our algorithm, we allow a
P(n,n)={1-K(n)B[Z(n)]}P(n,n—=1)+vyl, (24  subwindow ofT, observation stepsT<T;), during which
estimation ofa is omitted. In the remaining subwindow of
where y is a small scaling factor introduced to improve the (T, —T,) observation steps, estimation af is then per-
RBF network’s adaptability to future input observations informed to retrieve the message signal.
the case of very rapid convergence of the EKF algorithm.  gpecifically, the purpose in the first subwindowTof ob-
[12] Finally, it is worth noting that when a new unit is added servation steps is mainly to train the network to track the
to the hidden layer, the dimension Bfn,n) changes, as can dynamics, and in the next subwindow f(— T,) observa-

be seen from the following relation: tion steps, the “trained” network estimatas using
e L e 25 Xi[NT,(M+1)+1]=h[Z’(n+1)], (29)
0, Pol
where0, and0, are zero matrices of appropriate dimension, X[NT(M+1)+2]=h[Z"(n+1)], (29

and pg is a constant representing an estimate of the uncer-
tainty in the initial values assigned to the network param-where
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X [NTo(M+1)]

2 a1 y[nTz(M:+ 1)-1]

yInTo(M+1)=(M—-1)] |

Amplitude

X [NTo(M+1)+1]
X [NTo(M+1)]
Z'(n+1)= y[nTo(M+1)—1] , (30

5000 10000 15000 20000 25000
Time (sampling period}

L Y[NTo,(M+1)—(M—2)]

o ) FIG. 5. A male speech wave form: “CHAOS COMMUNICA-
and the least-squares-fit is used to retrieve the mesaage TIONS,” sampled at 11 kHz and 8 bit precision.
i.e., using Eq(7). The following pseudocodes summarize the
demodulation algorithm:
¢ (1.37, ke[1,551
1.42, ke[552,1102

initialize the networks, 1.35, ke[1103,1653

for each message signal a(k)

for each observatiofiz(n),y[n(M+1)]} do ak)=¢ 1.39, ke[1654,2204. (31
compute networks output subject to Eq. (11), 1.32, ke[2205,2755
determine whether or not a hidden unit should be
added, 1.36, ke[2756,3308
if conditions (12) to (14) hold [ 1.4, ke[3307,3857

add a new hidden unit,
assign relevant parameters,

adjust covariance matrice (25), The sine-wave signal is as defined in E8).for k=1 to 200.
else The speech signal used in the test contains a male speech
adjust the networks parameters according to Egs.  signal “CHAOS COMMUNICATIONS,” as shown in Fig.
(18) to (24) 5, which is sampled at 11 kHz and 8 bit precision. Finally,
endif; the image signal is from an Einstein portrait with 20213
check the criterion for pruning a hidden unit, pixels, each pixel having 256 gray levels, as shown in Fig. 6.
if £(n)< 6 for T3 continuous observations In this proposed demodulating algorithm, each message sig-
delete the ith hidden unit, nal a(k) is constant in a time window of; observation
reduce the network size, steps. For example, each pixel value of the image signal is
endif; constant in itsT, observation steps, and each sampling value
ifn=T, of the speech signal is also constant in Ttg observation

estimate x;[nTo(M+1)+1] and x{nT,(M+1)  steps.
+2] with the RBF network,
perform demodulation with Eq. (7),
endif;
end for;
end for.
In the next section, we will implement the above demodu-
lation algorithm in an RBF network and apply the network to
extract messages from broadband signals.

V. COMPUTER SIMULATIONS AND EVALUATION

Four different kinds of message signals will be employed
to test the proposed demodulation scheme, namely, square-
wave, sine-wave, speech, and image signals. The square-
wave signal is defined by the following piecewise linear
function: FIG. 6. Einstein portrait (192213 pixels.

026202-6



ON-LINE ADAPTIVE CHAOTIC DEMODULATOR BASED . .. PHYSICAL REVIEW E63 026202

1.5 T T T T T T T T T T T T T T ]
message signal a{n) : — 1
o piecewise linear function T b
25
g g3 1
2 % &
s 53 ]
£ 5 I
w -0
ES 4
3 k]
z message sighal a(n) :
piecewise linear function
1.5 E
11 " [} i i1 n L 1 1 1. i 1 1 2 [ L I 'l 1 "
500 1000 1500 2000 2500 3000 3500 500 1000 1500 2006 2500 3000 3500
Time (observation step) Time (observation step)

FIG. 7. Error wave form ofx, for the case of square-wave FIG. 8. Number of hidden units showing growth profile for the
message. case of square-wave message.

In the simulation, the transmitted SS signal is controlled.,nonents of the first unpruned hidden unit's center vector.
to reach the required signal-to-noise rat8N\R) value in the

. ) From this, we can again see that the first window experiences
AWGN channel. For the retrieved signal, the mean-squarg, : g P
. ! e most rapid change.
error (MSE) is used to evaluate the demodulator's perfor- It should be clear that the RBF-based demodulator can
mance. The following definition for MSE is adopted. . . . . .
track the time-varying chaotic system by adaptively adjust-
LT ing both the number and center positions of the hidden layer
MSE=10 locd — am)—a(m1?|, 32 units. T_he message S|gr_1al and retrieved message signal are
ng[Ts n§=:1 [a(n)=a(n)] (32 shown in Fig. 10 and Fig. 11, for the cases of the square-
wave and sine-wave test messages, with SNE5dB. Also,

whereTs is the number of the sampled message signals. I#€ retrieved speech signal and Einstein portrait are shown in

our simulation, the parameters of the RBF network and théid. 12 and Fig. 13, respectively.

EKF are assigned as followd; =551, T,=5, T3=40, T, Finally, we measure the MSE performgnce for the test

=250, L=60, 7,=0.05, 73=0.07, 7mna=2.0, 7m, Message signals. Results are shown in Fig. 14, from whlch

=0.02, p=0.973, p,=15.0, y=0.01, B=0.997, andg  We can see that the MSE decreases as the channel SNR in-

=0.001. creases. At an SNR of 15dB, the MSE of the four retrieved
We will use the square-wave message example to illusSignals are, respectively, —21.1dB, —19.1dB, —22.9dB, and

trate a few important performance areas, namely, the error16.8dB for the square-wave, sine-wave, speech signal, and

propagation, the network growth profile, and the adaptivdmage signal.

movement of the hidden units centers.

(1) For the square-wave message and an SNR of 20 dB in 2.4 —r—r —— "]
the received SS signal, the error wave fornxpfs shown in ZZP .
Fig. 7, which shows that in the window of the fifBf obser- 20 j e fifst component ]
vation steps, the error is the largest among all subsequent 18 second component | -
windows of T; observation steps. This is because the track- en ]
ing of the dynamics is mainly done in the first window. In 4 '%i\ J—
each subsequent window ®f observation steps, it is found FRELN ]
that the error signal in the subwindow of the fifst obser- or 1
vation steps is larger than that in the rest of the window. The 22 : 1

subwindow from T,+1) to T, is, in fact, the estimation

Coordinates of the First Hidden Unit

window during which the message signal is evaluated ac- z:
cording to Eq.(7). 0.0
(2) lllustrated in Fig. 8 is the growth of the hidden layer. 02l
It can be seen that the variation of the number of hidden 04l
units in the first window is most drastic. Specifically, in the 0.6 f
window of the firstT, observation steps, the number of the B e o e

500 1000 1500 2000 2500 3000 3500

hidden units adaptively add and drop with time as well as Time (observation step)

with the input pattern. In the subsequent windows, the num-
ber of the hidden units varies with the input pattern adap- FIG. 9. Variation of the first componeritiotted line and the

tively. second componer(solid line) of the first unpruned hidden unit's
(3) Figure 9 shows the variation of the first and secondcenter.
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< 10 '

134 |- -

182 |- B

L L L 1 L 1 L
0
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I

5000 10000 15000 20000 25000
Time (sampling period)
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FIG. 10. Square-wave signéolid line) and retrieved square-

wave signal(dotted line, SNR-15dB). FIG. 12. Retrieved speech signal (MSE-22.9dB, SNR

=15dB).
Remarks

. . L roaches for parameter estimatif2g]. It should be noted
Itis of interest to note that the estimation of the parametety, 5 since our interest is to deal with noisy signals, the vari-

a(k) can be performed using direct computation based once of the added random noise used in our paper
Eq. (2), similar to the method described in Anishchenko and, _ 1 o- 1) is much higher than that used in Anishchenko and
Pavlov[19]. However, direct computation achieves réason-payjoy[19] (~1079).
able performance only when the noise level is very low. Our
method shows significant improvement over direct computa-
tion in the presence of noise. As a comparison, we present
here the MSE’s corresponding to the above same examples In realizing chaotic communication systems, two areas of
using the method of direct computation as in Anishchenk@erformance are important, namely, robustness to external
and Pavlo\{19]. In brief, the method of direct computation perturbationgnoise and parameter mismatchasd security,
[19] involves using the noisy data to solagrom Eq.(2) at  which are known to be a paradox in communication with
each observation step. Then, the average valueafer T;  chaos[27].
observation steps gives an estimate for the message signal. The first one concerns with the system immunity against
From Fig. 15, we note that when the SNR of the receivedparameter mismatches and noise in the channel. In our pro-
signal is 15dB, the MSE of the four retrieved signals areposed system, variation of the system parameter is exploited
69.5dB, 89.9dB, 139.2dB and 145.8dB for the square-wavefpr transmitting messages, and resynchronization at the re-
sine-wave, speech signal and image signal, respectivelyeiver (which is sensitive to external perturnbatipns not
Thus, we can see the significant improvement that can beequired. Hence, parameter mismatches do not present prob-
gained from using the proposed method, especially for applilems to our system, as they may do in other chaotic commu-
cations in noisy environment. In fact, at a high noise levelication systems.
(low SNR), the chaotic dynamics of Eq2) will be drasti- The second area of performance concerns the security of
cally altered, invalidating the conventional demodulation apthe system. In the chaotic modulation system under study,
the receiver is assumed to “know” the transmitter. This of-

VI. DISCUSSION

T I I I T
| message signal .....retrieved signal|

a(n)

20 40 60 80 100 120 140 160 180 200
Time (T, observation steps)

FIG. 11. Sine-wave signdkolid line) and retrieved sine-wave
signal (dotted line, SNR=15dB). FIG. 13. Retrieved Einstein portraisBNR=15dB).
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T T T T T T T T T T T T T T 1] 1 I I
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SNR (dB) SNR (dB)

FIG. 14. MSE of retrieved source signals versus SNR using the FIG. 15. MSE of retrieved source signals versus SNR using
proposed method. direct computatior(for comparisoi (Ref. [19]).

fers the basic level of security because, without knowledgé&saussian noise. The message is injected into a Henon-map-
of the kind of functions and parameter variation involved inbased transmitter system as variation of a bifurcation param-
the transmitter, it is almost impossible for an intruder to re-eter. The demodulation process essentially aims to recover
cover the transmitted message. When the transmitter ithe embedded parameter variation. The essential component
“known,” moreover, security becomes limited since an in- of the proposed demodulator is a radial-basis-function neural
truder may be able to perform tracking and parameter estinetwork, which incorporates an adaptive learning algorithm
mation through a different means, such as using theo track the dynamics of the Henon map. The least-squares fit
adaptive-control based method studied by Zhou and24i  is used to estimate message signals. The purpose of the adap-
It should be noted that tracking in a highly noisy environ-tive learning algorithm is to adaptively configure hidden
ment as studied in this paper is still a very difficult task, layer size and adjust the relevant parameters with an ex-
making it nontrivial for an intruder to recover the messagetended Kalman filter algorithm. The system is tested with
even with good knowledge of the transmit{®2,27]. Fur-  square-wave, sine-wave, image, and speech signals serving
thermore, one may also achieve a greater level of security iis messages. Results have demonstrated that the demodula-
some cryptographic feature is incorporated in the modulationor is capable of performing the required demodulation task
process. This, however, is beyond the scope of the presefdr a noisy communication channel.
paper.
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