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Abstract 

Osteoarthritis (OA), is a chronic debilitating disease that affects millions of individuals and is 

characterized by the degeneration of joint subchondral bone and cartilage. These tissue 

degenerations manifest as joint pain, limited range of joint motion, and overall diminished 

quality of life. Currently, the exact mechanism(s) and cause(s) by which OA initiates and 

progresses remain unknown. The multi-factorial complex nature of OA (i.e. age, diabetes, 

obesity, and prior injuries have all been shown to play a role in OA) contributes to the current 

lack of a cure or effective long-term treatment for OA.  

One re-emerging and interesting hypothesis revolves around the delicate homeostatic 

microvascular environment around the cartilage – an avascular tissue. The absence of blood 

vessels within cartilage stresses the importance of nutrient and oxygen delivery from the 

neighbouring synovium and subchondral bone. Currently, the effects of changes in the 

subchondral bone microvessel density on cartilage health remain unknown due to the 

difficulties in simultaneously studying dense bone and the associated small microvessels. 

Computed tomography (CT) is widely used in the diagnosis of OA, as the use of x-rays 

provide detailed images of the bone degeneration associated with OA. However, the study of 

microvessels using CT has been exceptionally difficult due to their small (< 10 µm) size, lack 

of contrast from neighbouring soft tissues, and proximity to dense bone. The purpose of this 

thesis was to develop a novel dual-energy micro-computed tomography (DECT) compatible 

vascular perfusion contrast agent and the associated instrumentation to optimize DECT on 

pre-clinical, cone-beam micro-CT scanners. The combination of these two techniques would 

facilitate the simultaneous visualization and quantification of subchondral bone and 

microvessels within the bone underlining the cartilage (i.e. distal femoral epiphysis and 

proximal tibial epiphysis) of rats that have undergone an OA-induced surgery. Results gained 

from this study will further provide information into the role that microvessels may play in 

OA.  
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Chapter 1  

1 INTRODUCTION 

1.1 The Importance of Microvessels 

The health and maintenance of the humans’ body vascular supply is essential for the 

well-being of every single tissue and organ. The vast blood vessel network, specifically 

the microvessels (i.e. capillaries, < 10 µm) are responsible for the transportation of 

oxygen, nutrients, and inflammatory molecules to tissues, as well as the removal of CO2 

and waste products.1,2 Thus, adverse changes to the vascular supply (i.e. reduced blood 

flow or increased inflammatory response) may affect local tissues before cascading into 

larger and more detrimental effects on the body.  

Alterations to the blood circulatory system have been linked to a variety of diseases: 

diabetes,3 avascular necrosis,4 cancer,5-7 osteoporosis,8-10 and osteoarthritis.11,12 Among 

these diseases, osteoarthritis – a chronic degenerative joint disease that affects both the 

growing and aging populations – is noteworthy. Despite the connection between 

microvessels and osteoarthritis, the administration of anti-angiogenic13 or possible 

angiogenic drugs14 has yielded limited success. Presently, with no available cure and 

limited treatment success, the concern among the affected populations is ever-increasing.  

It is apparent that knowledge gaps surrounding the mechanisms by which changes in the 

vascular supply may promote the development of osteoarthritis remain. Thus, research 

into the role and mechanism(s) which microvessels play in the initiation and progression 

of osteoarthritis may provide new insight and identify targets for treatments and 

preventative measures. 
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1.2 Osteoarthritis 

Osteoarthritis (OA) is a chronic debilitating joint disease and is the most common form of 

arthritis (i.e. rheumatoid, osteoarthritis, psoriatic, etc).16-19 Osteoarthritis affects millions 

of individuals;20-23 in Canada alone, ~ 10% over the age of 15 are affected24 and by 2030, 

it is projected that a total of 25% (~9 million) of the Canadian population will have OA.25 

Clinically, OA is diagnosed through the examination of x-ray images for the presence of 

cartilage loss, joint space narrowing, bone degeneration and spurs on x-ray images 

(Figure 1.1).26-29 This joint disease commonly affects the hand, hip, knee, back, and 

neck.20,24,26,30,31 Symptomatically, OA manifests as painful and stiff joints, which limit 

mobility and prevent the ability to perform simple tasks (i.e. sit-to-stand motion, fine 

motor skills to hold utensils, etc.), resulting in an overall decrease in quality of life for 

patients.32  

 

Figure 1.1: Overview of the physiological effects of osteoarthritis on the knee joint. The right side 

(medial) side of the figure demonstrates the bone and cartilage degeneration associated with OA, 

while the left (lateral) side demonstrates a healthy knee joint. Reproduced with permission from 

Felson et al., 2006.15 Copyright Massachusetts Medical Society. 
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In addition to the physical burdens imposed by OA, the costs associated with its 

management are extremely high. In Canada, the health care costs of OA are projected to 

increase from $2.9 billion to $7.6 billion by 2031.33 The largest contributions (> 40%) to 

health care costs are hospital inpatient costs, elective surgeries, and revision joint 

replacement surgeries (Figure 1.2).34 The total cost of OA management is further 

increased with the addition of work loss costs;35 in Canada, these costs alone 

exceed $17.5 billion.33,35  

The extensive physical and economic burden imposed by OA has provided the 

motivation for research into developing treatments for OA. Unfortunately, there does not 

yet exist an effective disease modifying osteoarthritis drug (DMOAD) that can reverse 

the cartilage and bone degeneration caused by OA, with current prescribed medications 

 

Figure 1.2: Pie chart demonstrating the relative cost breakdown for individuals affected with 

OA. Reproduced with permission from Hunter et al., 2014.34 Copyright Springer Nature. 
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alleviating only the OA-associated pain.36,37 At the moment, total joint replacements 

(TJRs) are presented as the only effective long-term solution to OA.38,39 However, these 

metal and plastic implants eventually fail due to poor bone integration, implant loosening, 

wear, and stress shielding.33 40,41 Thus, TJRs are not a permanent solution and require a 

replacement every 15 – 20 years.42-45 Replacing an implant requires revision surgeries, 

which can increase the risk of complications (i.e. infections) and subsequently, costs to 

the healthcare system and patient. The absence of a permanent solution to treat and 

reverse the course of OA emphasizes the need for further research into understanding the 

cause(s) and mechanism(s) of OA. Information garnered from these studies may result in 

a better understanding of OA and lead to improvements of current methodologies, or 

alternative targets for DMOADs, treatments, and preventative measures.  

1.2.1 Microvascular Environment of Joints 

In humans, the exact cause(s) by which OA is initiated remains unknown. However, 

research has shown that individuals may be more susceptible to developing OA 

depending on pre-existing injuries,46-48 age,49,50 gender,50,51 obesity,50,52,53 genetic pre-

disposition,54,55 or diabetes.53,56,57 The wide variety of OA-associated factors (as listed 

above) emphasizes the multifactorial nature of OA and the difficulty in formulating an 

effective strategy for OA’s treatment and prevention.  

A re-emerging hypothesis on the initiation of OA revolves around the microvascular 

supply of the joint;12,58 where the previously mentioned factors may share a common 

association through changes in vessel architectures and densities. The role of 

microvessels in OA has been demonstrated through their ability to invade avascular 

cartilage and release inflammatory factors that facilitate the degeneration and 

calcification of cartilage.59  

The microvessel hypothesis speculates that changes to the delicate homeostatic nature of 

the microvessels results in subchondral bone changes that facilitate the vascular invasion 

into cartilage (Figure 1.3, right).12,60 Responsible for nutrients, inflammatory response, 

and waste removal (Figure 1.3, left), the microvascular environment is important for the 

healthy maintenance of the joint. However, disturbances to the microvessel architecture 
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and density may weaken the joint.12,61-65 It is not yet known whether the subchondral 

bone changes, cartilaginous vascular invasion, and eventual OA are the result of a 

decrease or increase in vascular density. Note that throughout this thesis, subchondral 

bone will refer to the region of trabecular and cortical bone between physis and the 

articular cartilage.  

Decreases in blood vessel density may lead to a diminished oxygen and nutrient flow to 

the joint in conjunction with reduced waste removal.12,66-69 Combined these effects may 

lead to the cartilage and bone degeneration observed within OA-affected joints. 

Alternatively, an increase in vasculature may result in subchondral bone remodeling and 

microvessel invasion into the cartilage. The subsequent release of inflammatory 

molecules within the cartilage (normally an avascular tissue) triggers its self-

 

Figure 1.3: Diagram depicting healthy (left) and OA (right) subchondral bone and cartilage. 

This figured shows the effect that vasculature and subchondral bone may have in the initiation 

and progression of OA, leading to the degeneration of bone and cartilage observed with OA. 

Reproduced with permission from Findlay et al.12 Copyright Oxford University Press. 
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degradation.70-73 With the renewed interest in vasculature becoming a target for OA 

treatments, differentiating between increases and decreases of vascular density is required 

for the proper administration of vessel suppressing or promoting drugs, respectively. 

Therefore, studying the subtle vascular density changes within an animal model of OA is 

crucial to understand the role of microvessels during the initiation and progression of OA.  

1.2.2 Animal Models of Osteoarthritis 

Animal research has been crucial in the study of how previously mentioned factors (i.e. 

pre-existing injuries, age, obesity, etc.) play a role in OA.74-78 Results of animal studies 

have led to the successful management of OA-induced symptoms within specific animal 

models. Unfortunately, translation of treatments (derived from animal studies) to humans 

has not shown the same level of success.79-84 The lack of an effective treatment may be 

attributed to multiple factors: differences in the manifestation of OA between animals and 

humans,85 genetic differences,86 differential joint loading,87 and possible yet-to-be 

discovered factors. Regardless, animal models of OA are required to expand our 

knowledge regarding the human pathogenesis of OA.  

Induction of OA within animals can be achieved through naturally occurring,88,89 

surgically-,74,90,91 or drug-induced models.77,92,93 While no current animal model perfectly 

mimics the etiology of OA found in humans, each animal OA model reflects specific 

portions of OA’s pathogenesis within humans.94  

The anterior cruciate ligament transection (ACLX) and partial media meniscectomy 

(PMM) surgically-induced animal model of OA95,96 is of interest. Within rats, the 

combination of ACLX + PMM results in subchondral bone changes that closely resemble 

the subchondral bone changes observed within early onset OA in humans.95 Therefore, 

studying changes to the microvessel densities during the initiation and progression of this 

surgically-induced animal model of OA may reveal whether an initial increase or 

decrease in vascular density precedes or results from the observed subchondral bone 

changes.  
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1.2.2.1 Difficulties in Studying the Micro-Vasculature 

Unfortunately, the visualization, characterization, and quantification of microvessels of 

the joint is difficult due to multiple factors: (1) microvessels can be as small as 5-10 µm 

(i.e. capillaries); (2) lack of inherent vascular contrast; and (3) their proximity to dense 

tissues such as bone. Combined, these three challenges have proven difficult for any 

single imaging technique.  

The ideal imaging technique would be non-destructive (allowing for further sample 

characterizations via other methodologies) and it would provide routine 3D visualization, 

characterization and quantification of the microvascular environment and associated 

skeletal structures in response to the surgical induction of OA (ACLX + PMM surgeries). 

Information gained from such an imaging technique would provide insight into the role 

of the microvasculature within subchondral bone during the initiation and progression of 

OA.   

1.3 Imaging Modalities for Micro-Vasculature and Bone 
Analysis 

Histology and light microscopy are considered the gold standard imaging techniques.5,97 

Using a multitude of microscopic magnifications and stains, histology allows for the 

visualization, characterization, and quantification of microvasculature.98,99 However, the 

histological examination of bone is difficult due to bone’s highly compact mineralized 

nature, which inhibits the blade from uniformly cutting through the sample. Thus, 

samples containing bone are typically demineralized or decalcified prior to histologically 

sectioning and staining. Due to the inherently destructive histological process, obtaining 

3D representations of an entire sample requires laborious scanning and reconstruction of 

serial sections.100-102 This process limits the applicability of histology with studies that 

require high throughput (i.e. large numbers of specimens) or large samples (i.e. whole 

limbs). However, pre-clinical imaging techniques such as micro-magnetic resonance 

imaging, contrast-enhanced ultrasound, and micro-computed tomography can provide 

images that would allow the visualization, characterization, and quantification of 

microvessels and bone within in vitro and ex vivo intact specimens.  
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Micro-magnetic resonance imaging (micro-MRI) is a non-destructive imaging technique 

that can facilitate the visualization and characterization of microvessels and bones with 

the use of various pulse sequences and contrast enhancements.103-105 Perfusion with 

exogenous vascular contrast agents 106,107 allows for the detection of the contrast 

enhanced vessels against the un-enhanced surrounding soft tissue. Micro-MRI possesses 

the resolution necessary to detect in-plane microvessels (i.e. capillaries, < 10 µm).108 

However, the image signal-to-noise (SNR) in combination with non-isotropic voxels, 

hinders the accurate detection and characterization of microvessels within the large slice 

thicknesses.109  

Ultrasound (US) is a common and relatively inexpensive imaging technique, in 

comparison to micro-MRI and micro-computed tomography.110 The use of contrast-

enhanced ultrasound (CEUS) is commonly employed to detect microvessels. Separately, 

CEUS detects contrast-enhanced vessels facilitated with a bolus injection of microbubble 

backscatters,5 and US can detect fractures along the bone surfaces.111,112 However, the 

imaging of vessels within bones has proven challenging due to internal reflections of the 

backscattered signal. Lower frequency and increased power transducers can penetrate 

deeper into tissues and provide the internal visualization of bone; however, these imaging 

systems have reduced resolution113 and increased heat tissue deposition.114,115 In addition 

to the reduction in resolution and increased possibility of sample degradation (through 

increased heat deposition), the typical contrast-to-noise ratio (CNR) within CEUS images 

is rather poor, especially at resolutions necessary to distinguish between microvessels and 

subchondral bone.  
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Micro-computed tomography (micro-CT, Figure 1.4) is a ubiquitous imaging technique 

routinely used for the visualization and characterization of bone95,116-118 and vessels (i.e. 

angiography).119,120 Micro-CT is commonly used in the analysis and visualization of 

dense x-ray attenuating objects, such as bone. However, visualization and detection of the 

low x-ray attenuating vessels require the addition of an exogenous vascular contrast agent 

(similar to micro-MRI and CEUS).121  

In comparison to CEUS, the noise within micro-CT images is reduced and on par with 

those acquired with micro-MRI. Therefore, with an already well-established ability to 

characterize and visualize bone and vessels, micro-CT is the ideal imaging methodology 

for the in vitro and ex vivo study of changes to the subchondral bone and its associated 

vascular networks during the initiation and progression of OA.  

 

Figure 1.4: Micro-CT scanner located at Robarts Research Institute.  
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1.4 Micro-Computed Tomography Analysis of Micro-
Vasculature and Bone 

Micro-CT acquisition involves the projection of x-rays through a sample, where a 

detector records the x-ray attenuation (i.e. x-ray absorption) along each ray path. Signal 

intensity within micro-CT images is dependent on the electron density of the sample. The 

generation of a micro-CT image involves the acquisition of hundreds of two-dimensional 

(2D) projections at many view angles around the object of interest. Three-dimensional 

(3D) image reconstruction is then carried out using established algorithms (such as 

filtered back-projection, implemented in cone-beam geometry).122 Within the 3D volume, 

each volumetric element (i.e. voxel) is assigned a CT number proportional to the linear 

attenuation coefficient – of the material within that voxel.123  

In practice, micro-CT is commonly used for the examination of objects with natural 

endogenous contrast, resulting in easier visualization within CT images124– such as 

bones,125-128 verification of medical apparatuses,129,130 geological and material 

analysis.131-135 However, as previously mentioned, visualizing materials with low-

electron densities (i.e. soft tissues) is difficult and requires contrast enhancement via 

exogenous agents.136  

1.4.1 Contrast Enhancement 

Visualization of materials with low x-ray contrast difference relative to their 

surroundings (e.g. blood vessels within tissue) requires the addition of an exogenous 

contrast agent.137,138 Clinically, an iodine-based vascular contrast agent is injected into 

the blood stream to enhance the x-ray attenuation of perfused vessels (i.e. angiography). 

Thus, the contrast-enhanced vessels can be easily visualized and automatically segmented 

(based on greyscale values) from surrounding non-contrast enhanced soft tissues. Due to 

insufficient spatial resolution and partial volume effects, perfused contrast-enhanced 

vessels are indistinguishable and masked when present near and within dense x-ray 

attenuating bone. Thus, iodine-based agents are unable to facilitate the distinction and 

automatic separation of perfused vessels from nearby bone, when based on greyscale 

values alone (Figure 1.5).139 
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Figure 1.5: Images depicting the typical results of a CT angiogram of the legs of a patient. Iodine 

vascular contrast enhancement of perfused vasculature (i.e. femoral artery) is easily distinguished 

from surrounding soft tissue. However, as one can imagine, distinguishing perfused vasculature 

surrounding dense skeletal structure (i.e. femur, tibia, and ankle) based on greyscale values is 

extremely difficult. Modified with permission from Yamamoto et al., 2009.140 Copyright 

Elsevier.  

Pre-clinically, higher-electron density barium (Ba)- and lead (Pb)-based contrast agents 

provide significantly higher x-ray attenuation than the iodine-based counterpart.141 

However, the contrast enhancement, provided by Ba and Pb, exhibits similar greyscale 
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values as cortical bone,142 hindering the automated separation of the perfused vascular 

network within and around bone.  

To overcome this challenge, the sample can be scanned with micro-CT before the 

addition of the contrast agent (i.e. bone-only image) and following perfusion of the 

contrast agent and decalcification of bone (i.e. vessel-only image).143,144 Combining the 

two resulting scans would provide a visualization of the interaction between the perfused 

vessels and bone. However, the main disadvantage of this methodology is the 

susceptibility to improper image co-registration between the acquired scans, caused by 

movement of vessels and tissues during perfusion and decalcification processes. The 

resulting misalignments between the vascular network and bone may lead to 

misinterpretations regarding the anatomical relationship between vessels and bone.  

Fortunately, there does exist a micro-CT imaging technique that can non-destructively 

and simultaneously acquire segmented volumes of soft tissue, bone and perfused vessels: 

dual-energy micro-computed tomography. 

1.4.2 Dual-Energy Micro-Computed Tomography (DECT) 

Dual-energy micro-CT (DECT) is an imaging technique that can separate components 

within a sample, based on their elemental composition. As the name infers, DECT 

involves scanning specimens at two x-ray energies, followed by the application of 

decomposition algorithms that exploit differences between the elemental specific x-ray 

attenuation signatures of each component.  With this approach, visually distinct and 

quantifiable 3D volumes of each component can be obtained.142 The performance of 

DECT and image decomposition can be further improved by tailoring the DECT-

acquisition parameters to the specific absorption K-edge of the material of interest.  

When sufficient x-ray energy is present to exceed an elements’ unique absorption K-edge 

energy (i.e. the x-ray energy required to eject an inner K-shell electron), a significant 

increase in x-ray attenuation is observed. Image decomposition of the material-of-interest 

can be significantly improved by tailoring and narrowing the low- and high-energy (i.e. 

dual-energy) x-ray spectra around the element-specific distinctive x-ray attenuation spike. 
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Synchrotron radiation-based DECT (SRDECT) presents itself as an ideal DECT imaging 

technique due to its ability to provide monochromatic x-ray energies.145,146 Synchrotron 

facilities can provide x-rays of a single energy with high photon flux, resulting in 

increased signal-to-noise, reduced noise, and a reduction in scan times.147 Additionally, 

the sub-micron resolution148 can allow the resolution of smaller structures, and recent 

developments detectors have allowed for larger field-of-views.149 While appealing, the 

main drawbacks associated with SRDECT are: (1) limited number of synchrotron 

facilities; (2) cost associated with travelling to these facilities; (3) competition for 

beamtime; and (4) synchronization of biological experiments with available beamtime.  

The use of pre-clinical micro-CT scanners for DECT analysis is a more practical 

approach due to the wider availability of scanners (in comparison to synchrotrons) and 

their current use in DECT research.150-152 However, optimizing the performance of DECT 

on pre-clinical, gantry-based, cone-beam, micro-CT scanners has been challenging due 

to: (1) lower x-ray tube potentials (90 kVp) which may limit the performance of DECT 

on contrast agents of high-Z (i.e. Pb); (2) limited accessibility to micro-CT scanner 

internal hardware to apply the necessary x-ray filtration to shape output x-ray spectra; 

and (3) inherent gantry movements and non-reproducible bed micro-movements, which 

may result in image misalignment.  

Recent developments outlined throughout this thesis will demonstrate the methodologies 

and techniques implemented to optimally perform DECT on a pre-clinical, gantry-based, 

cone-beam, micro-CT scanner. We explain how to tailor the output x-ray spectrum of a 

pre-clinical micro-CT scanner for a customizable novel ex vivo vascular perfusion 

contrast agent. The combination of our contrast agent and DECT was then applied to 

study the micro-vascular and subchondral bone differences within the hindlimbs of a 

well-characterized surgically induced rat model of OA over the course of 8-weeks post-

operatively.   

1.5 Thesis Objectives and Hypotheses 

In this thesis, we present the methodologies required to: (1) develop a novel pre-clinical, 

DECT-compatible, ex vivo Er-based microvascular (i.e. capillaries of < 10 µm) perfusion 
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contrast agent; (2) implementation of DECT on pre-clinical, gantry-based, micro-CT 

scanners with a lower peak tube potential of 90 kVp; and (3) the combination of the 

above techniques to study the concurrent microvascular and subchondral bone changes 

that may occur during the initiation and progression of OA in a well-characterized 

surgically induced rat hindlimb model of OA (i.e. ACLX + PMM). The ultimate results 

of each Chapter are summarized as follows. 

In Chapter 2, we describe and characterize a novel DECT-compatible erbium (Er)-based 

ex vivo vascular perfusion contrast agent. Ultrasonic cavitation was employed to create a 

colloidal suspension of nanoparticle-sized aggregates of erbium oxide (Er2O3) suspended 

within a two-part silicone elastomer carrier. Intact mice were perfused post-mortem with 

our Er-based suspension to evaluate its efficacy as a vascular perfusion contrast agent. 

Micro-CT scans (50 µm isotropic voxel spacing) of Er-perfused mice confirmed a 

significantly higher contrast enhancement of vessels when compared with nearby dense 

bone and with a commercially available Pb-based contrast agent. High-resolution micro-

CT scans (5 µm isotropic voxel spacing) of well-characterized mouse kidney vasculature 

verified the ability of the novel vascular contrast agent to perfuse the smallest vessels (i.e. 

capillaries, < 10 µm). 

In Chapter 3, we outline the methodology required to customize and optimize DECT for 

our novel Er-based contrast agent (Chapter 2) in a way that is compatible with the large 

installed base of pre-clinical gantry-based cone-beam micro-CT scanners with a 90 kVp 

operating x-ray tube potential. This chapter outlines the required aspects for the optimum 

performance of DECT: (1) choosing and fabricating appropriate x-ray filtration and 

acquisition protocols to match Er’s absorption K-edge; (2) fabrication of an automated 

filter-exchange mechanism for the automated acquisition of DECT images; and (3) 

accurate sub-voxel image co-registration using fiducial markers. The optimized DECT 

was demonstrated through the automated decomposition of several Er-perfused rat 

hindlimbs into distinct and quantifiable 3D volumes of soft tissue, bone, and vessel.  

In Chapter 4, the combination of our novel Er-based contrast agent (Chapter 2) and 

optimized DECT (Chapter 3) was utilized to simultaneously study the subchondral bone 
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and microvessel changes during the initiation and progression of OA within a well-

characterized surgically-induced rat hindlimb model of OA (i.e. ACLX + PMM). Rats 

(N = 56) were split into two surgery groups (ACLX + PMM or sham surgery) and for 

various time points (T = 0, 1, 2, 4, and 8 weeks) post-surgery. Quantitative analysis of 

vessel and bone changes was confined to the distal femoral epiphysis and proximal tibial 

epiphysis regions, due to their proximity to the cartilaginous surface and ease of 

contouring regions of interest within the CT data.   

In Chapter 5, we present a summary of the main goals and findings from Chapters 2 – 4.  

Additionally, we review future directions and research that may benefit from the work 

presented within this thesis.  
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Chapter 2  

2 Erbium-Based Perfusion Contrast Agent for Small-
Animal Microvessel Imaging 

2.1 Introduction 

It is increasingly important in pre-clinical research to study the vasculature in both soft 

tissue and bone.1-5 This includes visualization, quantification, and characterization of 

microvessels (i.e. vessels less than 10 µm in diameter). Micro-computed tomography 

(micro-CT) of intact ex vivo small animals can provide images with spatial resolution 

better than 5 µm.6-8 However, blood-filled vessels lack inherent radiographic contrast, 

requiring the use of an exogeneous contrast agent that can pass through capillaries and be 

retained within the vascular system. The increased contrast provided by such an agent 

facilitates automated (or semi-automated) segmentation (i.e. separation) of the perfused 

vasculature from surrounding tissues. 

The performance (sensitivity, specificity, and accuracy) of vessel segmentation 

algorithms has been shown to be dependent on the contrast-to-noise ratio (CNR, defined 

as the ratio of the vessel signal to surrounding tissue signal) between the contrast-

enhanced vasculature and surrounding tissue in the micro-CT image.9 Higher CNR 

results in a more robust and objective classification of the perfused vessels, leading to a 

more accurate assessment of their microarchitecture. The CNR can be increased by either 

reducing background noise or increasing the signal intensity within the vessel. However, 

decreasing micro-CT image noise is typically impractical, as it is achieved through much 

longer scan times.10 Therefore, the most effective method to increase vessel CNR is to 

increase the contrast within the vasculature, using a radiopaque exogeneous contrast 

agent. 

Several formulations of exogeneous vascular contrast agents are commonly available. 

Most clinical contrast agents for in vivo use are iodine-based. However, their small 

molecular size of < 800 Da, results in rapid clearance (i.e. within minutes) via the 

kidneys.11,12 Even in post-mortem studies with increased iodine concentrations and scan 
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times, the short retention time of these iodine-based agents make them unsuitable for 

micro-vessel studies. Pre-clinical exogeneous agents, of larger molecular sizes (i.e. > 

1100 Da), can remain within the blood pool for hours.13,14 These contrast agents are 

typically iodine-, barium-, or lead-based and have been used effectively to study vessel 

microarchitecture in the heart,15,16 kidney,17,18 tumours,19,20 nerves,21-23 and long 

bones.24,25 However, these pre-clinical contrast agents do not exhibit optimal x-ray 

absorption (and hence do not optimize CNR) on a large installed base of micro-CT 

machines that typically operate at a maximum of 90 kilo-electron volts (keV).  

X-ray absorption, responsible for observed contrast within x-ray images, is influenced by 

the K-edge of the contrast material (i.e. the energy required to eject an inner K-shell 

electron). The K-edges for common pre-clinical contrast agents are 33 keV for iodine, 

37.4 keV for barium, and 88 keV for lead. These K-edge energies are not optimally 

matched for typical micro-focus tubes operating at a peak potential of 90 kVp, as the K-

edge energies are located either at the low- or high-energy range of the output spectrum 

of the tube. Ideally, a contrast agent with a K-edge closer to the mean energy of the 

output spectrum of these micro-CT machines (~42.7 keV) would provide enhanced x-ray 

absorption. 

The lanthanide erbium (Er), with a K-edge at 57.5 keV, would provide the contrast 

necessary for micro-CT scanners operating at 90 kVp. An Er-based contrast agent would 

also provide an additional benefit for dual-energy micro-CT studies, which require CT 

scans above and below the K-edge of the material of interest.26 In this study, we describe 

a novel contrast agent based on erbium oxide (Er2O3) nanoparticles (nominal diameter of 

~50 nm), and illustrate a process by which Er2O3 nanoparticles form a colloidal 

suspension in a continuous-phase fluid (i.e. two-part liquid silicone elastomer). This 

methodology of contrast agent fabrication resulted in a high atomic number (and 

consequently highly x-ray attenuating) ex vivo vascular perfusion contrast agent, with 

sufficiently low viscosity (19.2 mPa∙s) to ensure the perfusion of the micro-vascular 

network (< 10 µm).  
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Using single-energy micro-CT, we demonstrate the efficacy of the custom contrast agent 

in a post-mortem murine model. The contrast agent perfused the smallest vessels in a 

mouse kidney (i.e. glomerular capillary bundles), and provided increased CNR with 

respect to surrounding tissues, facilitating the visualization of micro-vessels with 

diameter < 10 µm. The Er-based contrast agent provided a greater CNR than 

commercially available agents, while also possessing a more appropriate absorption K-

edge energy (57.5 keV). The resulting increase in vessel contrast would enhance the 

performance and automation of segmentation algorithms in all types of vascular networks 

and small-animal models (for both single- and dual-energy studies). This approach will 

be applicable in many pre-clinical studies, including musculoskeletal, cardiovascular, 

neurovascular, and oncological research programs. 

2.2 Materials and Methods 

2.2.1 Er-based Contrast Agent Preparation 

Erbium oxide (Er2O3) nanoparticles (NPs) were chosen as the main constituent of the 

contrast agent, due to their high x-ray attenuation and availability in a nanoparticulate 

powder (nominal diameter ~ 50 nm). To deliver the Er2O3 NPs throughout the vascular 

network, a commercially available two-part silicone elastomer (commonly used for 

vascular perfusion, Microfil MV-132, Flowtech Inc., Carver, MA, USA) was chosen as 

the carrier matrix. Uncured, this silicone elastomer has a manufacturer-reported viscosity 

of 20 mPa∙s and when cured, the silicone matrix entrains the suspended Er2O3 NPs to 

form a stable silicone cast of the perfused vasculature. Initial experiments revealed 

difficulties incorporating the Er2O3 NPs within the two-part silicone elastomer. Analysis, 

via confocal fluorescence microscopy, of the uncoated Er2O3 powder revealed the 

tendency of the NPs to naturally aggregate into clusters > 1 µm, due to van der Waals 

forces – nanoparticulate powders have been shown to naturally clump and form much 

larger particle sizes when left uncoated or untreated.27,28 Large aggregates such as these 

could clump together and prevent the perfusion of arterioles and capillaries, inhibiting 

perfusion of the venous system. Thus, to address the fact that uncoated nanoparticles tend 

to aggregate into large clumps (i.e. > 100 μm) a method was devised to ensure the size of 

the Er2O3 NPs in the final product remained smaller than 100 nm, as follows. 
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2.2.2 Er2O3 NP silicone elastomer suspension 

Uncoated Er2O3 NPs of ~50 nm nominal diameter (Nanostructured and Amorphous 

Materials, Houston, TX, USA) were ground using a mortar and pestle for ~ 5 minutes to 

break down large aggregates. The ground powder was then mixed with an additive-free 

clear two-part silicone elastomer (Microfil MV-132, Carver, MA, USA), which is mixed 

in a ratio of two parts MV-Diluent to one part MV-132. To prepare 30 mL of contrast 

agent, 4.0 g of ground Er2O3 (i.e. 13.3% w/v) was added to 17.47 mL of MV-Diluent and 

8.73 mL of MV-132; the remaining 3.8 mL was comprised of the curing agent described 

below, which was added immediately prior to perfusion into the animal. The uncured 

suspension of Er2O3 powder and silicone elastomer was probe sonicated (Branson Digital 

Sonifier 450D, standard 13 mm tapped horn, Crystal Electronics, Newmarket, ON, CAN) 

for a total of 35 minutes with 25% amplitude and a duty cycle of 30 s ON to 10 s OFF. 

Due to the intense heat generated during sonication, the samples were immersed in an ice 

bath and sonication was performed in three intervals interspersed with 5 – 10 minute 

cool-down periods. The Er2O3 NP silicone elastomer suspension was prepared several 

hours prior to perfusion, to allow particle aggregates to settle, then decanted prior to use. 

If prepared further in advance, sonication of the suspension of 5 - 10 minutes is required 

to ensure particle re-suspension. 

2.2.3 Curing agent 

To facilitate consistent and controlled curing of the Er2O3 NP silicone elastomer 

suspension, a tin-based curing agent was prepared in-house. The curing agent comprised 

a solution of 40% (w/w) dibutyltin dilaurate (Sigma Aldrich, St. Louis, MI, USA) in 

tetraethyl orthosilicate (Sigma Aldrich, St. Louis, MI, USA), which was mixed using a 

magnetic stirrer for several hours until it became a homogeneous pale-yellow transparent 

solution. 

2.2.4 Er-based Contrast Agent Characterization 

Particle and aggregate sizes of the “raw” and sonicated Er2O3 powder were evaluated 

visually using confocal fluorescence microscopy. Prior to sonication, drops of raw Er2O3 

powder mixed within the two-part silicone elastomer were dispensed on a glass bottom 
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microwell dish (MatTek Corporation, Ashland, MA, USA). Following sonication, drops 

of the prepared Er-based suspension were placed on a separate microwell dish. Samples 

were analyzed using confocal fluorescence microscopy (Leica DMi8, Wetzlar, Germany), 

an Ar 488 nm laser for excitation, and emission bandwidths of 493 – 739 nm. To 

visualize particle sizes within the non-sonicated “raw” sample and sonicated suspension, 

a 20x (HC PL APO CS2 20x/0.75 DRY) and 63x (HC PL APO CS2 63x/1.40 OIL) 

objective lens were used, respectively. 

Dynamic Light Scattering (DLS) was used to quantify the size distribution of the 

prepared Er-based suspension. A 10% (v/v) dilution of the suspension in MV-Diluent 

was prepared and analyzed with DLS (ZetaSizer Nano instrument, Malvern Instruments 

Ltd, Malvern, UK). Measurements were performed at room temperature (25°C) in a 

quartz cuvette (1 mg/mL). 

The viscosity of the contrast agent was measured using a lab-based Modular Compact 

Rheometer (MCR 302, Anton Paar, Graz, Austria); the measured viscosity was used to 

correct the DLS measurements. 

2.2.5 Animals 

All animal studies were approved by the Animal Use Subcommittee at Western 

University (protocol #2015-018). Five male C57BL/6 mice (~30 g) were used for this 

study. The mouse model was selected to demonstrate the capability of the Er2O3 contrast 

agent to perfuse the microvasculature of the smallest of the commonly used small animal 

models. Anesthetized mice were exsanguinated with sterile saline followed by perfusion 

with the Er-contrast agent. To prevent blood clot formation during exsanguination, sterile 

0.9% (w/v) saline was heparinized to 0.4% (1 mL of heparin (Sandoz, QC, CAN) in 250 

mL saline). Sterile tubing (Baxter Canada, Mississauga, ON, CAN), 1.8 m in length, was 

used to connect the saline bag to a blunted 21G × 3/4” butterfly catheter (BD, Franklin 

Lakes, NJ, USA). The saline IV bag was hung 127 cm above the surgery table, thereby 

providing a pressure of 94 mmHg. Five minutes prior to the start of the procedure the 

mice were given a 100 μl intraperitoneal injection of heparin. After induction of 

anesthesia (3% isoflurane (Baxter Canada, Mississauga, ON, CAN) in O2 at a rate of 2 
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mL/min) an incision was made along the thoracic cavity exposing the heart. The butterfly 

catheter was carefully inserted into the left ventricle parallel to the septum. A drop of 

cyanoacrylate (Krazy Glue, Elmer’s Products, Atlanta, GA, USA) was applied at the 

entry point of the catheter into the left ventricle to avoid accidental piercing of the 

septum. The right atrium was clipped to allow for circulatory system drainage. The 

heparinized saline solution was perfused throughout the circulatory system for 10 

minutes to ensure complete removal of the blood.   

During saline perfusion, 3.8 mL (12.7% v/v) of curing agent was added to 36.2 ml Er2O3-

based silicone elastomer suspension and vortexed (VWR® Fixed Speed Vortex Mixer, 

Radnor, PA, USA) continuously for 8 minutes. The contrast agent was injected into an 

empty IV bag (with separate 1.8 m of surgical tubing) and hung 160 cm above the mice 

(129 mm Hg). While this value is greater than the mean arterial pressure (MAP) of mice 

(~ 103 mm Hg),29,30 it was chosen to ensure complete perfusion of the animal before the 

contrast agent cured. Furthermore, the perfusion pressure used in this study is 

significantly lower than the >150 mmHg used in prior studies using the lead-based 

Microfil agent.22,31-33 Perfusion at a pressure more closely matched to peak systolic 

pressure (i.e. ~120 mmHg) reduces the risk of vascular dilation and capillary rupture. The 

contrast agent was let to freely perfuse through the animal until completely cured, which 

occurred approximately ~35 minutes after start of perfusion. Following contrast agent 

curing, mice were placed in 10% neutral buffered formalin overnight, prior to micro-CT 

scanning. 

2.2.6 Data Collection and Analysis 

Whole body mouse scans were acquired with a pre-clinical micro-CT scanner (Vision 

120, GE Healthcare, London, ON, CAN). The scan parameters were 90 kVp (no added 

filtration), 40 mA, 900 views, 0.4º increment angle over 360º, geometric magnification of 

1.13, 16 ms exposure, resulting in a total exposure time of 14.4 s and 576 mAs. Including 

the time required for gantry motion and recording of image projections, the total 

acquisition time was 5 minutes. The projection images were binned 2 × 2 prior to 

reconstruction for a final isotropic voxel spacing of 100 μm.  
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Higher resolution scans of the hindlimb regions were acquired on a specimen scanner 

(Locus, GE Healthcare, London, ON, CAN) using a 3 hr scan protocol (900 views, 80 

kVp, 80 μA, no added filtration, 0.4° increment angle over 360º, geometric magnification 

of 1.41, 15 frame averaging, and 2 × 2 binning for a final isotropic voxel spacing of 

40 μm). To prevent sample motion during these high-resolution image acquisitions, the 

perfused mouse was placed in a 50 mL tube.  

Confirmation of perfusion of micro-vessels (i.e. < 10 µm) was achieved by high-

resolution single-energy micro-CT. Fabricated micro-vessel constructs, or synthetic 

capillaries have been utilized to evaluate micro-vessel perfusions in the past,34,35 but 

fabricating synthetic vessels with diameters on the order of 10 µm remains technically 

challenging. Fortunately, the mouse kidney is a well-characterized organ system, with 

known vessel diameters ranging from the renal artery (~0.3 mm) to capillaries 

(~10 µm).36,37 The kidney contains many glomeruli (responsible for the waste removal 

and blood filtering), which are comprised of capillaries in a bundle of ~75 µm diameter.38 

Therefore, an excised Er2O3-perfused kidney was embedded in paraffin in a 1.2 mL tube 

(Corning®, Corning, NY, USA) and scanned with a specimen scanner (Locus SP, GE 

Healthcare, London, ON, CAN), using a 16 hr protocol. Scan parameters were 80 kVp, 

80 μA, 900 projections, no added filtration, 0.4° increment angle over 360º, geometric 

magnification of 3.83, 14 frame averaging, and 1 × 1 binning for a final isotropic spatial 

resolution of 4.8 μm.  

The micro-CT scanners used in this study were all equipped with a CsI-based energy-

weighted detector. It has been shown that the peak response of these detectors39 is very 

close to the absorption K-edge of Er (57.5 keV), making them ideally suited for detection 

of an Er-based contrast agent.  

Each of the scans contained calibrators of water and air, which were used for image 

calibration and conversion into Hounsfield units (HU). This allowed us to quantify the 

amount of contrast enhancement of perfused vasculature, based on the CT signal level in 

HU within various organs throughout the vascular system. Using 3D visualization and 

analysis software (MicroView, GE Healthcare, London, ON, CAN), regions of interest 
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(ROI) 500 × 500 × 500 μm were generated in each region and the mean HU values 

recorded. Specifically, for all mice, the mean HU was determined from the heart (left 

ventricle), testes, and inferior vena cava (IVC), as they represented the beginning, 

middle, and end of the perfusion pathway, respectively. The CT signal levels within the 

selected organs were compared to cortical bone within the diaphysis region (i.e. the 

densest endogenous contrast) and a commercially available lead-based contrast agent.  A 

rat hindlimb previously perfused with the widely used and commercially available lead-

based contrast agent (Microfil MV-122, Flowtech Inc, Caver, MA, USA) was scanned 

using the 100 µm acquisition protocol. 

All statistical analyses were performed using Prism 6 (GraphPad Software Inc, La Jolla, 

CA, USA). Repeated measures ANOVA was used to test for statistical differences 

between all Er-based contrast-enhanced regions (i.e. heart, testes, IVC) and cortical bone.  

In a separate test, one-way unpaired ANOVA was performed to compare the mean 

attenuation in Er-perfused vessels against cortical bone and the Microfil MV122-perfused 

rat femoral artery. Statistical differences were noted if a p < 0.05 was achieved. 

2.3 Results  

2.3.1 Efficacy of an ex vivo Er-based contrast agent for vascular 
perfusion 

An effective pre-clinical post-mortem x-ray compatible vascular contrast agent must be 

comprised of small, x-ray attenuating particles homogeneously suspended within a low-

viscosity medium. These characteristics will ensure uniform contrast enhancement of 

perfused vasculature, including micro-vessels with diameter < 10 µm (i.e. capillaries). 

Automated segmentation algorithms, which are typically based on grey-scale levels, 

require homogeneous perfusion of micro-vessels to effectively separate perfused 

vasculature from surrounding tissues, so it is essential to employ an appropriate particle 

size, uniformly distributed in the carrier medium. 
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Ultrasonic cavitation (sonication) was used to successfully break up large aggregates of 

Er2O3 to nm-sized aggregates, which could be homogeneously incorporated within the 

two-part silicone matrix. Following intense sonication, a visually homogeneous 

suspension of 13.3% w/v Er2O3 within the two-part silicone elastomer was achieved. The 

Er2O3 NPs were found to remain in suspension for several days, allowing for the contrast 

agent to be prepared several days prior to use. Confocal fluorescence microscopy visually 

confirmed that the size of the sonicated nanoparticles within the Er2O3 contrast agent 

suspension (Figure 2.1B) were less than 100 nm – a size that can pass easily through the 

micro-vessels of any vascular system. 

 

Figure 2.1: Confocal fluorescence microscopy images of (A) non-sonicated raw Er2O3 powder 

naturally aggregated to large micro-sized (> 10 µm) particles when mixed within the two-part 

silicone elastomer, making the suspension not suitable for microvascular perfusion. However, 

with sonication, nano-sized (~70 nm) particles were achieved (B). 
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The ability of a contrast agent to perfuse the microvasculature also depends on its 

viscosity. Measuring the viscosity of the uncured Er-based contrast agent – at 19.2 mPa∙s 

– demonstrated agreement with the 20 mPa∙s viscosity reported by the manufacturer of 

the two-part silicone elastomer, confirming that the uncured Er2O3 contrast agent is able 

to pass through small vessels under standard perfusion pressures. 

Based on the measured viscosity of 19.2 mPa∙s, the DLS measurement reported a 

Gaussian particle size distribution with mean hydrodynamic diameter of 64.8 nm, 

standard deviation of 11.1 nm, and a range from 44 to 122 nm (Figure 2.2 and A.1). 

Measurements of particle size and carrier viscosity indicated that the prepared Er2O3 

suspension should easily pass through micro-vessels; this aspect of performance was 

further evaluated by micro-CT imaging of intact perfused mice. 

 

 

Figure 2.2: Dynamic light scattering (DLS) results demonstrating the particle size distribution 

of a sample of the Er2O3 contrast agent. Average particle size is 64.8 ± 11.1 nm. Results of a 

suspension that was mixed and subsequently stored for 2-years are shown in A.1. 
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Whole Er2O3-perfused C57Bl/6 mice scanned with 50 µm isotropic voxel spacing, and 

rebinned 2 × 2 to a final resolution of 100 µm, revealed a uniform and homogeneous 

distribution of the cured Er2O3 contrast agent within the vasculature throughout the entire 

perfused mouse (Figure 2.3). The vasculature displayed enhanced contrast in comparison 

to surrounding tissues throughout an intact animal; importantly the attenuation of the 

contrasted vessels was higher than that of bone. 

 

Figure 2.3: Rebinned 100 µm voxel images where the (A) Maximum intensity projection (MIP) 

of a whole-body perfused mouse demonstrates that the attenuation of the Er2O3 contrast agent in 

the vasculature is higher than the mouse’s skeletal structure. Quantitative measurements of 

attenuation (in HU) were obtained from regions drawn within heart (B), testes (C), inferior vena 

cava (D), and cortical bone (E). 
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Scans of Er-contrast-perfused hindlimbs were acquired with 20 µm isotropic voxel 

spacing and subsequently rebinned 2 × 2 for a final resolution of 40 µm (Figure 2.4), to 

observe the smaller vasculature next to the dense bony structures of the femur and tibia. 

From these results, we were able to clearly see a feeding artery that runs within (Figure 

2.4A) and along (Figure 2.4B) the entire length of each long bone. At this higher 

resolution, smaller structures such as a foramen (i.e. an opening for blood vessels to enter 

bone) can be visualized (Figure 2.4C). The ability to differentiate the foramen from the 

vessel running through it is particularly noteworthy, as this is not possible with other 

contrast agents that have lower attenuation coefficients.  The observed perfusion of the 

venous system (Figure 2.4A yellow arrows) suggests successful perfusion of the 

capillaries, which is further supported by the lack of visible contrast-agent pooling within 

the interstitial space (pooling might have been observed if over-pressurization during 

perfusion had caused micro-vessel rupture).  

 

Figure 2.4: Multi-planar reformatted images at 40 µm, resulting from 2 × 2 rebinning of 20 µm 

acquired micro-CT scans, clearly depict the ability to visualize the extent of the nutrient arteries, 

which run along the tibia and femur. Red arrows highlight the nutrient arteries in cross-section in 

(A) and along their entire length in (B). At this resolution the depiction of parallel arteries and 

veins (yellow arrows) indicates successful perfusion through the capillary network. The ability to 

visualize vessels as they pass through a foramen (green arrows) into bone is depicted in (C). 

 



40 

 

2.3.2 Visualization of capillary bed perfusion 

The results of the high-resolution micro-CT scan revealed that the Er2O3 contrast agent 

successfully perfused the entire continuous, well-ordered vascular tree of the kidney 

(Figure 2.5). The contrast enhancement of the vasculature was sufficiently high, such that 

a single grey-scale threshold separated perfused vasculature from surrounding tissues, 

allowing for the generation of 3D images of the kidney vessel microarchitecture 

(Figure 2.5B). The virtual Er2O3 vascular “cast” (Figure 2.5A and B) showed complete 

perfusion from the abdominal aorta (i.e. a main feeding vessel) down to the 6th and 7th 

arterial branches (i.e. glomeruli afferent arterioles). Previous research has shown that 

mouse glomeruli afferent arterioles can be as small as ~13 µm;36 thus, visualization of 

individual glomeruli (i.e. several capillaries) suggests that our contrast agent is able to 

perfuse structures < 13 µm (Figure 2.5C and D). While previous research has shown 

perfusion of the kidney down to the afferent arterioles36,40-42 using a commercially 

available lead-based contrast agent, the main advantage of the Er2O3 – based contrast 

agent is its ability to provide higher contrast and CNR.  
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Figure 2.5: (A) MIP of an entire mouse kidney and attached adrenal gland (arrow) perfused with 

the new Er contrast agent. (B) 3D rendering of the perfused kidney with a plane cut to 

demonstrate an entire intact vascular tree. (C) magnified 0.35 mm thick slice MIP of the area 

outlined in red in (A), demonstrating 6-7th level arterial branching. (D) 3D rendering of the 

terminal arteriole branches, ending in the glomeruli (the kidney’s spherical capillary bed). G = 

glomeruli; AF = afferent arteriole; EF = efferent arteriole; RA = cruciate radial artery; RV = 

cruciate radial vein; AA = arcuate artery; AV = arcuate vein; and VR = vasa recta.  
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2.3.3 Contrast enhancement provided by the Er-based contrast 
agent in micro-CT 

The measured mean CT values for the heart (4094 ± 264 HU), testes (4107 ± 182 HU), 

and IVC (4001 ± 305 HU), compared in Figure 2.6, showed no significance difference 

(p = 0.3940) between these three regions. On the other hand, the mean signal from 

cortical bone (2359 ± 207 HU) and the lead-based contrast agent Microfil MV-122 (2683 

± 77.6 HU) were significantly lower than the signal from the Er contrast-agent perfused 

vasculature (p <0.006 and p <0.0001 for bone and Microfil, respectively). The 

approximately 1400 HU difference in signal between that provided by the Er2O3 - based 

contrast agent and cortical bone will aid in facilitating the automatic segmentation of 

vessels from surrounding bone, which is not possible when commercially available 

contrast agents, such as Microfil MV 122, are used.   

 

Figure 2.6: Heart, testes, and inferior vena cava (IVC) were chosen to represent the start, middle, 

and end of the perfusion route. The attenuation (HU) of the Er2O3 - based contrast agent in all 

three regions was significantly higher than that of cortical bone (p < 0.006, repeated measures 

ANOVA). Importantly, the attenuation of the Er2O3 – enhanced vasculature was significantly 

higher than that commercially available lead-based Microfil MV122 (one-way ANOVA, 
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p < 0.0001), while there was no difference between Microfil MV122 and cortical bone 

(p > 0.9999). 

2.4 Discussion  

We have demonstrated a methodology for the homogeneous incorporation of Er2O3 

nanoparticles within a two-part silicone elastomer, forming a colloidal suspension 

capable of providing high x-ray attenuation that can facilitate the visualization and 

characterization of micro-vessels within a small animal model. In this study, we 

characterized and investigated the capabilities of the custom ex vivo Er-based vascular 

perfusion contrast agent. 

Ultrasonic cavitation successfully broke down large naturally occurring Er2O3 aggregates 

(i.e. > 100 µm) into nm-sized particles (Figure 2.1B and 2.2) suspended within a silicone 

carrier. The prepared suspension was determined to possess low viscosity and a narrow 

particle size distribution that would facilitate the perfusion of intact whole-body mice 

(Figure 2.3). Micro-CT scans acquired with both 50 and 20 µm isotropic voxel spacings 

revealed whole-mouse perfusion and higher-ordered vascular branching (i.e. 1st to 3rd 

order) and visualization of vessels within bone (Figure 2.3 and 2.4). High-resolution 

scans with 5 µm spatial resolution demonstrated well-characterized vascular 

microarchitecture within a perfused kidney, with observed vascular filling down to 

vessels < 13 µm in diameter and contrast enhancement of capillary beds (i.e. glomeruli, 

Figure 2.5). Additionally, the attenuation of the Er-based contrast agent was found to be 

significantly higher than that of cortical bone (i.e. the densest naturally occurring 

substance within our samples) and the commonly used lead-based Microfil (MV-122) 

vascular contrast agent (Figure 2.6). This study clearly demonstrates the efficacy of the 

custom Er-based suspension as an ex vivo micro-CT vascular perfusion contrast agent.  

An important benefit of the presented Er-based contrast agent is an x-ray attenuation 

coefficient that is significantly higher than that of both bone and other existing contrast 

agents. This difference facilitates the separation of microvessels from both soft tissue and 

bone in the images and can also result in a reduction of scan time. While shorter scans 

result in a greater amount of noise,10 the higher contrast between the Er contrast agent 
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within the vasculature and surrounding tissue ensures that CNR remains high despite the 

shorter scan times. The approach used to incorporate the Er nanoparticles within the 

suspension (i.e. ultrasonic cavitation) renders the approach amenable to the production of 

custom contrast agents of varying elemental compositions and concentrations. 

Furthermore, silicone-compatible colorants can also be introduced within the silicone 

media to allow for the customization of the contrast agents’ visual appearance against 

tissue; this may be useful for macroscopic visualization and post-mortem histological 

analysis.  

In the current implementation, each working volume of contrast agent (i.e. 30 ml) is 

prepared individually, requiring approximately one hour of operator time. Larger 

volumes of contrast agent could be prepared in advance, with the curing catalyst being 

added just prior to usage.  In this case, additional sonication may be required to ensure re-

suspension of aggregated particles (Figure A.1).   

As with other cast-forming contrast agents (e.g. Microfil) the new Er-based contrast agent 

is limited to applications of post-mortem vascular analysis at study endpoints. This 

limitation requires that larger cohorts of animals are needed to assess changes to the 

vasculature over periods of time. An in vivo contrast agent would make investigations 

with reduced sample size possible and allow for the study of vascular changes within the 

same animal over time; however, development of an in vivo contrast agent is not within 

the scope of this study. Currently, there exist in vivo contrast agents that reside within the 

blood pool for extended periods of time;43,44 thus, we expect that the incorporation of Er 

into an in vivo agent is possible. 

2.5 Conclusions 

We have demonstrated the effectiveness of an Er-based suspension as a single-energy x-

ray vascular contrast agent that significantly enhances the contrast – in comparison to 

surrounding dense bone and commercially available lead-based contrast agents (Figure 

2.6) – of perfused vasculature within small animals (Figure 2.3-2.5). With an absorption 

K-edge at 57.5 keV, the Er-based contrast agent is also ideally suited for dual-energy 

micro-computed tomography (DECT) on a large installed base of high-resolution pre-
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clinical micro-CT machines that operate at up to 90 kVp. The combination of the Er2O3-

based vascular perfusion contrast agent with optimized DECT scan protocols and spectral 

shaping (using x-ray filtration) would facilitate rapid and automatic quantitative 

segmentation of perfused vasculature from surrounding tissues,26 a process that is 

otherwise difficult due to partial volume effects that can limit traditional single-energy 

CT scans. Dual-energy CT-based material separation has been shown to be beneficial in 

studying a range of diseases in clinical applications (i.e. gout, cardiovascular, and 

cancer),45-47 by allowing for the quantitative separation of the material of interest from 

surrounding tissues. The novel contrast agent that we describe has the potential to provide 

these advantages of DECT-based quantification and segmentation for pre-clinical 

investigations of vascular changes in small-animal models; this concept will be explored 

in Chapters 3 and 4. 
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Chapter 3  

3 Dual-Energy Computed Tomography for a Gantry-
Based Pre-Clinical Cone-Beam Micro-CT Scanner 

3.1 Introduction 

Micro-computed tomography (micro-CT) is widely utilized in biological studies for its 

capability of providing high-resolution images of contrasting tissues. Attenuation within 

micro-CT images is dependent on the materials’ effective atomic number (i.e. Z, electron 

density), where higher Z materials (i.e. higher electron density) will exhibit higher x-ray 

attenuation due to photoelectric absorption.1,2 For biological samples, bone can be easily 

visually separated from surrounding soft tissues (i.e. muscle, fat, etc.) due to its 

composition. However, discrimination between soft tissues is difficult, due to their 

relatively similar electron densities.3 To enhance the visualization of soft tissues, tissue-

specific exogeneous contrast agents are commonly required.4,5 Vascular contrast agents 

(i.e. angiography), are routinely used to facilitate the visualization and distinction of 

perfused vasculature from surrounding non-contrast enhanced soft tissues.6  

Clinical angiography typically employs the use of iodine-based contrast agents.7-9 X-ray 

images of perfused vasculature are markedly different – due to the increased contrast – 

from surrounding soft tissue, allowing for the automatic segmentation of contrasted-

vessels based on greyscale values alone.10 However, due to the dilution of injected 

iodine-based contrast agents and its diffusion within the blood stream, the contrast 

enhancement of vessels is often masked by nearby dense bone. For in vitro and ex vivo 

applications, more highly x-ray attenuating vascular agents such as lead-based silicone 

elastomers (Microfil MV-122, Flowtech, Inc., MA, USA) can be utilized.11 Nonetheless, 

the mean CT signal level of perfused vessels appears similar to cortical bone, hindering 

their automatic separation based on greyscale values.5,12  

Dual-energy micro-CT (DECT) is an x-ray imaging technique that can facilitate the 

automatic decomposition and segmentation of materials based on their elemental 

composition. Dual-energy CT is used clinically for angiography13 and kidney stone 
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identification.14 As the name implies, DECT involves scanning a sample at different 

energy spectra – achieved through differing acquisition protocols. Each material exhibits 

a unique elemental x-ray attenuation signature; thus, within composite samples, DECT 

decomposes each material based on their differential contrast at two different x-ray 

energies. The performance and image decomposition of DECT can be further improved if 

the dual-energy spectra are tailored to a material’s absorption K-edge.  

Every material possesses a unique absorption K-edge energy (i.e. the x-ray energy 

required to eject an inner K-shell electron), which leads to a significant increase in x-ray 

attenuation when x-ray energies are above the K-edge energy. Dual-energy CT performed 

with mean spectral x-ray energies above and below the K-edge of interest takes 

advantage of this increased attenuation to improve the decomposition of materials of 

interest. There are multiple avenues to performing DECT, whether it is through fast kV-

switching,15,16 dual-source,15 or dual-detector CT scanners.17 However, the large installed 

base of conventional pre-clinical micro-CT scanners are limited to scanning at a single x-

ray energy at a time. The inherently polychromatic nature (i.e. implement with a broad x-

ray spectrum) of these micro-CT scanners requires the careful selection of dual-energy 

acquisition protocols, as large amounts of spectral overlap will reduce the effectiveness 

of DECT decompositions. 

Spectral separation between the low- and high-energy images can be achieved through 

spectral shaping with differential added filtration to optimize the performance of 

DECT.18-21 This has been successfully shown in previous research,5 where copper and 

lead foils were utilized to facilitate the necessary spectral separation, resulting in the 

DECT decomposition of a rat hindlimb (perfused with a lead-based contrast agent) into 

separate images of bone and vasculature. However, a limitation associated with the use of 

a lead-based dual-energy contrast agent is that the high K-edge energy of lead (88 keV) 

necessitates the use of a high x-ray tube potential (e.g. 140 kVp) to achieve adequate 

spectral separation.5 However, many pre-clinical micro-CT scanners are limited to 

maximum tube potentials of approximately 80 – 90 kVp, which reduces the effectiveness 

of DECT with Pb-based contrast agents (due to limited photon flux above the K-edge at 

88 keV).  
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A DECT-compatible erbium (Er)-based ex vivo vascular perfusion contrast agent has 

been previously developed and characterized.22 The Er-based suspension is ideally suited 

for DECT as its absorption K-edge (i.e. 57.5 keV) is located close to the mean energy of 

micro-CT scanners (~42.7 kVp) with a 90 kVp maximum tube potential. Nonetheless, 

optimizing DECT for an Er-based agent requires spectral shaping tailored to erbium’s K-

edge, through the addition of x-ray filtration. Typically, the low- and high-energy images 

will be acquired sequentially, with different filters; this leads to the potential for 

geometric misregistration between image volumes, due to non-reproducible scanner 

gantry movements. It may therefore be necessary to implement a method of image co-

registration between acquired low- and high-energy image volumes. 

This study outlines the design, implementation, and evaluation of optimized DECT on a 

pre-clinical cone-beam gantry-based micro-CT scanner. In this investigation, we describe 

a technique for the fabrication of: (1) custom x-ray filters to facilitate the needed spectral 

separation on pre-clinical high-resolution gantry-based micro-CT scanners; (2) fiducial 

marker-based image co-registration to correct for inherent micro-CT scanner bed and 

gantry movement between sequential scans; and, (3) a motorized filter-exchange 

mechanism for automated DECT acquisition. The evaluation of DECT was visually and 

quantitatively confirmed through the automated decomposition of rat hindlimbs – 

perfused with an Er-based vascular contrast agent – into individual volumes of soft tissue, 

bone, and perfused vessels. The combination of the readily available techniques and 

materials outlined throughout this study will allow users of a large installed base of 

micro-CT scanners limited to scanning at a single x-ray energy at a time to perform 

optimized DECT.  

3.2 Materials and Methods 

3.2.1 Spectral Shaping and Modeling  

X-ray spectra were modelled using a previously developed computational tool for x-ray 

spectral simulation (Spektr 2.0).23 This model incorporated CT scanner-specific 

parameters, such as target angle of 15°, source-to-isocenter distance of 22.59 cm, 

additional anode inherent filtration equivalent to 1.0 mm Al (Dunlee, DU 404), and 2 cm 
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Lexan. Spectra were modelled with varying thicknesses of x-ray filtering materials and 

simulated at 0.5 kVp increments. All modelling and calculations were performed within 

Matlab (R2016b, MathWorks Inc, Natick, MA, USA).  

Selection of the optimal parameters for low- and high-energy DECT scans involves the 

choice of x-ray energy (i.e. kVp), type of filtration (i.e. elemental composition), and 

thickness of filtration. The process necessarily involves a balance between optimizing    

x-ray photon flux while maintaining sufficient spectral separation. Added filtration is 

used to increase the mean energy of the spectrum and to reduce the width of the 

spectrum. In the absence of filtration (i.e. maximum photon flux), high signal-to-noise 

(SNR) images can be acquired; however, the lack of spectral separation between the low- 

and high-energy spectra will reduce the accuracy of DECT decompositions – visualized 

as misclassified voxels between decomposed volumes. Conversely, excessive filtration 

will enhance spectral separation, yet the resulting diminished photon flux will result in 

poor SNR images, again compromising DECT decomposition accuracy.  

We chose 90 kVp as the tube potential for the high-energy spectrum, as the mean energy 

of the unfiltered spectrum (~42.7 kVp) is close to erbium’s absorption K-edge (57.5 

keV). Additionally, 90 kVp is typical the maximum tube potential of a large installed 

base of laboratory micro-CT scanners. The low-energy spectrum was set at 70 kVp, to 

provide efficient x-ray production and ensure adequate photon flux just below the 

absorption K-edge of Er. With the low- and high-energy tube potentials selected, it was 

necessary to choose materials for differential x-ray filtration to facilitate the spectral 

separation required for optimized DECT.   

To filter the high-energy spectrum, copper (Cu) was selected to preferentially attenuate 

low-energy photons, thereby shifting the mean energy higher. In addition, copper is 

available in foil-form at varying thicknesses and low cost; it is widely used as a x-ray 

filter for both single-24-26 and dual-energy CT.5,27 To model the behavior of Cu, the x-ray 

cross section of Cu was obtained from the National Institute of Standards and 

Technology’s (NIST) online database. Using the modelled output x-ray spectrum of our 

micro-CT scanner (GE Vision 120, GE HealthCare, London, Ontario), a total Cu path 
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length of 550 µm was calculated for a photon flux reduction of 70% (Figure 3.1b). 

Previous research with a rat hindlimb perfused with a Pb-based agent,5 has shown that a 

70% photon flux reduction (i.e. 30% photon transmission) resulted in sufficient spectral 

separation to facilitate the decomposition of DECT images into segmented bone and 

perfused vessel images.  

To filter the low-energy spectrum, we selected an Er-based filter, as it will inherently 

attenuate photons above 57.5 keV. Using the cross-sectional values of Er from NIST, a 

calculated Er thickness of 68 µm would provide a 50% photon flux reduction, generating 

a photon flux similar to that of the filtered high-energy spectrum (Figure 3.1, bottom 

panel). 
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Figure 3.1: Computer modelled spectral distributions of the chosen 70 and 90 kVp low- and 

high-energy spectra, respectively. (Top panel) Results of the modelled unfiltered 70 and 90 kVp 

spectra. (Bottom panel) Modelled spectra of the 70 and 90 kVp with the addition of filtration to 

increase spectral separation and reduction of overall photon flux. 

3.2.2 X-ray Filter Fabrication 

The Cu and Er filters described above can be implemented on bench-top specimen micro-

CT scanners by placing metal foils at the x-ray tube port, prior to the sample. However, 

for use with gantry-based micro-CT scanners, it may not be possible or practical to 

modify the system in this manner. The addition of a mechanism to mount the filters on 

the tube port – and exchange them between scans – may interfere with the normal 

operation of the scanner and gantry balance. For these reasons, we elected to implement 
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an annular cylindrical filter that surrounds the scan bed yet fits within the scanner bore. 

This approach to filtration avoids modifications to the scanner and is compatible with 

gantry-based scanners.5 Although the annular filter acts through a combination of pre- 

and post-object filtration, it provides a total attenuation that is equivalent to a pre-object 

filter of identical path length.    

A high-energy Cu x-ray filter was fabricated from readily available Cu foil. Sheets of 

0.08 mm Cu foil were wrapped around an acrylic annular cylinder, with dimensions of 

8.2 cm outer diameter (OD) × 6.4 cm height (H) × 0.3 cm wall thickness (WT). These 

dimensions were chosen to be slightly less than the maximum field-of-view (FOV) size 

for the selected micro-CT scanner (Vision 120, GE HealthCare, London, ON, CAN), 

facilitating the reconstruction of the entire x-ray filter and sample during DECT-

acquisitions. A total of three individual layers of Cu foil provided a total pathlength of 

0.48 mm, resulting in a photon flux reduction of 66%. However, unlike the high-energy 

x-ray filter, fabrication of the low-energy Er x-ray filter remained challenging, as 

sufficiently large sheets of Er are not readily available and may be prohibitively costly. 

Therefore, this led us to develop a new methodology, which allowed the creation of cast 

nano-powder-incorporated resin-based annular filters; in our case, inexpensive erbium 

oxide nanoparticles.  

To craft a custom cylindrical Er x-ray filter, a master filter shape and its respective 

negative silicone mold were required. The master cylindrical annular shape was 

machined from a solid cylindrical aluminum stock (Al, Alloy 6061, McMaster-Carr, 

Aurora, OH) till dimensions of 8.2 OD × 6.4 cm H × 0.3 cm WT were achieved. The 

bottom-half of the mold was constructed by embedding the Al filter in a thin layer 

(~ 1 cm) of sulfur-free clay (Monster Clay, OH, USA) within an acrylic “box” 

(Figure 3.2b); exact box dimensions are not critical. Several registration keys, fashioned 

from clay, were placed throughout the mold. The silicone elastomer mixture was 

prepared as instructed by the manufacturer (Bluestar Silicones RTV 4420 QC, NJ, USA), 

poured into the acrylic box and allowed to cure (~1 hr, Figure 3.2d). The respective top-

half of the mold was created by inverting the cured silicone and Al filter, removing the 

clay and spraying exposed surfaces with mold release (Smooth-Cast® Ease-Release, PA, 
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USA). Fill and evacuation ports were modelled from clay and affixed to the Al filter. A 

second batch of silicone elastomer mixture was poured to cover the exposed Al filter and 

allowed to cure (Figure 3.2de). The tight fit of the co-registered two-part mold 

(Figure 3.2f) would prevent leaking of the poured Er-infused resin casting mixture. 

To cast the low-energy Er x-ray filter, erbium oxide (Er2O3, American Elements, CA, 

USA) nanoparticles (nominal diameter ~ 50 nm) were incorporated within a 9-minute 

pot-life two-part resin mixture (Smooth-Cast® 321, Smooth-On, PA, USA). To create an 

effective Er-foil pathlength of 68 µm, 5.27 g of Er2O3 was mixed thoroughly with 30 mL 

of Part B and placed in a vacuum chamber (~101.3 kPa) until all air bubbles had been 

evacuated. An equal volume of Part A (30 mL) was carefully mixed with the Part B and 

Er2O3 mixture for a total of 2.5 minutes. The resin mixture was placed back into the 

vacuum chamber for an additional 2.5 minutes (achieving ~ 68 kPa). To minimize 

introduction of air bubbles during casting, the resin mixture was poured as a slow and 

thin continuous stream into the fill port of the silicone mold (Figure 3.2f). The Er-infused 

resin was cured overnight before extraction and removal of excess resin (Figure 3.2g). 

The cast low-energy Er x-ray filter resulted in a 49% reduction of photon flux. 
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Figure 3.2: Process implemented to fabricate a custom silicone mold used to cast custom resin   

x-ray filters. (a) Master machined aluminum (Al) filter. (b) Assembled box, comprised of 

multiple acrylic pieces, to encompass the two-part silicone that is to be poured over the embedded 

Al filter within a layer of sulphur-free clay. (c) Extracted silicone mold representing the bottom-

half of the silicone mold. Circle emphasizes one of the 7 registration keys that were used to 

ensure accurate assembling of the silicone bottom- and top-half. (d) Silicone mold of the top-half. 

Circle represents the corresponding registration key from (c). (e) Top-half of the silicone mold 

flipped to demonstrate the fill and evacuation ports (arrows). (f) Assembled silicone mold. (g) 

Fabricated custom x-ray filters, the erbium-impregnated resin casted low-energy filter (right) and 

the copper foil wrapped around acrylic core high-energy filter (left). 
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3.2.3 Dual-Energy Micro-Computed Tomography 

All samples were scanned with our DECT protocols on a pre-clinical gantry-based cone-

beam micro-CT scanner (Vision 120, GE Healthcare, London, ON, CAN). The low-

energy scan parameters were 70 kVp, the additional Er-cast resin filter (as previously 

described), and 50 mA. The high-energy was acquired at 90 kVp, with the previously 

mentioned Cu filter, and 40 mA. Both low- and high-energy scans were acquired with 50 

µm isotropic voxel spacings, 1200 projections at 0.3° increments over 360°, 10 frames 

averaged per projection, and 16 ms per frame. The total time required for each energy 

scan was approximately 1.5 hrs, which included the time required for gantry motion and 

recording of image projections; thus, a complete DECT scan was ~3 hrs. Reconstructed 

three-dimensional (3D) images were rebinned 2 × 2, resulting in 100 μm isotropic voxel 

spacing. Images were rescaled into Hounsfield units (HU) using vials of water and air 

within the field of view.  

3.2.3.1.1 Image Co-Registration 

Fiducial markers beads (1.6 mm polytetrafluoroethylene (PTFE), Teflon™, Figure 3.3b 

circles) were embedded in a distributed pattern (Figure 3.3ab) throughout a custom 

radiolucent polystyrene foam sample holder. Fiducial markers of PTFE were chosen as 

they provided sufficient contrast (making them easily segmented) and introduced 

minimal image artifacts. The centroid of a minimum of eight fiducial markers were used 

to derive a transformation matrix using a least-square fitting method;28 wherein the high-

energy image was rigidly transformed to the low-energy image with sub-voxel accuracy.  
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Figure 3.3: Instrumentation implemented on the micro-CT scanner, which facilitated the 

switching of x-ray filters and aided in image co-registration. (a) Individual pieces of the 

automated filter-exchange mechanism: (i) linear actuator filter-exchanger; (ii) control box for 

filter-exchange mechanism; (iii) clam shell which resides on the CT scan bed to support the x-ray 

filters; (iv) custom Er and Cu x-ray filters mounted to an acrylic cylinder; and, (v) radiolucent 

sample holder and sample. (b) Enhanced view of sample holder (a-v) to emphasize the many 

embedded fiducial markers, three of which have been encircled. (c) The entire setup assembled 

on our micro-CT scanner. 
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DECT Automation 

To increase sample throughput and reduce operator dependencies, a motorized filter-

exchange mechanism (Figure 3.3) was constructed to automate the DECT acquisition 

process. The filter-exchange mechanism automatically switches x-ray filters within the 

scanner bore, in between the low- and high-energy scans. Mounted on an acrylic cylinder 

(with an OD and WT identical to the master Al filter), the custom Er and Cu x-ray filters 

were actuated with a motor-driven lead screw (Figure 3.3ai) controlled by an embedded 

micro-controller (Arduino Uno, Figure 3.3aii). The filter-exchange mechanism assembly 

was secured on the micro-CT scan bed with a simple screw jack system. 

3.2.4 Contrast Agent Preparation 

The preparation of the Er-based ex vivo vascular perfusion contrast agent has been 

previously described in Chapter 2;22 briefly, perfusion of a sample required the 

formulation of a catalyzing curing agent and the Er-based suspension.  

The curing agent and Er-based contrast agent were prepared prior to perfusion in 

accordance to Chapter 2. The curing agent was comprised of 60% v/v dibutyl tin 

dilaurate (DBT) and 40% v/v tetraethylorthosilicate (TEOS) mixed until a homogeneous 

transparent pale-yellow colour was achieved. The Er-based contrast agent was comprised 

of a two-part silicone elastomer (Microfil 132, FlowTech Inc, MA, USA) with uniformly 

dispersed Er2O3 nanoparticles (nominal diameter 50 nm, Nanostructured and Amorphous 

Materials, TX, USA). To create a volume of 30 mL, sufficient for a single rat hindlimb 

perfusion, 4.0 g of Er2O3 (13.3 % w/v) was mixed within 8.73 ml of MV-132 and 

17.47 ml of MV-Diluent and probe sonicated for a total of 35 minutes.22 The remaining 

3.8 mL was comprised of the curing agent, as described above, added immediately prior 

to perfusion.  

3.2.5 Rat Hindlimb Perfusion 

A custom catheter with sufficient flexibility was created to aid in its manipulation during 

surgery and prevention of accidental vessel tearing upon insertion. The catheter was 

comprised of a blunted 18 G (BD, NJ, USA) needle with 15 cm of polyethylene tubing 
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(#1417011F, Fisher Scientific, NH, USA) and 10 cm silicone tubing tip (#60985-724, 

VWR, PA, USA). To join the silicone and polyethylene tubing, the silicone tubing was 

placed in diethyl ether (Sigma Aldrich, MI, USA) for ~10 s, causing the tubing to swell 

and ease its placement over the polyethylene tubing. A bevel was introduced on the tip of 

the silicone tubing. 

The Animal Use Subcommittee at the University of Western Ontario approved all animal 

experiments (protocol #2015-018). Ten male wild-type Sprague-Dawley rats (Harlan, 

Indianapolis, IN, USA) were anesthetized and maintained with 3% isoflurane (in 2% O2) 

isoflurane (Sandoz, QC, CAN). Five minutes prior to surgery, a jugular injection of 

500 μl heparin (to prevent blot clotting) was administered. An incision along the 

abdomen was made, and organs were parted till the aorta and inferior vena cava (IVC) 

were visualized. The parietal peritoneum covering the IVC and aorta was carefully 

separated from the underlying vessels using gauze. Two lengths of silk thread (~ 8 cm) 

were passed in between the separated aorta and IVC. One length of thread was used to tie 

off the aorta below the renal artery. Downstream of the tied-off aorta, a small incision 

was made in the aorta. The custom catheter (as described above) was inserted and 

maneuvered until the tip of the catheter was ~ 1- 2 cm above the aortic bifurcation. The 

second thread was gently tied off around the aorta and catheter, holding the catheter in 

place. The IVC was severed to allow for circulatory drainage. Hindlimbs were flushed 

with ~250 mL of 0.4% heparinized saline prior to perfusion of the Er-based contrast 

agent.  

3.8 mL of the prepared curing agent was added to the Er-suspension and vortexed 

continuously for 8 minutes. The mixture was injected into an IV bag and suspended 

175 cm above the animal, equivalent to 129 mm Hg. The contrast agent was perfused 

until cured (i.e. ~37 minutes post addition of curing agent). Rat hindlimbs were fixed in 

10% formalin for at least 2 weeks prior to the excision of the left hindlimb, its embedding 

within agar, and scanning with the previously outlined DECT protocols. 
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3.2.6 Image Processing 

To assess the homogeneity (i.e. uniform distribution of Er2O3 nanoparticles) of the cast 

Er-embedded resin filter we scanned the entire Er-filter at 90 kVp, 40 mA, 900 views, 

0.4º increments over 360º, 16 ms exposure, and total scan time of 5 minutes. The 

resulting volume was rebinned 2 × 2 for a final resolution of 100 µm. The mean CT 

values from ten randomly placed 300 × 300 × 300 µm regions-of-interest (ROIs) 

(MicroView, v2.2.RC5, GE HealthCare, London, ON, CAN) throughout the scanned Er-

filter were recorded and analyzed with a t-test, and significance was achieved if p < 0.05.  

Decomposition of DECT images were performed via matrix factorization, as previously 

outlined by Granton et al., 2008;29 and a more detailed explanation can be found in 

Appendix C. However, briefly, the decomposition required six values, represented by the 

mean HU value of pure soft-tissue, bone, and vessel from both low- and high-energy 

scans. These values were obtained from 500 × 500 × 500 µm ROIs (MicroView) within 

the bicep femoris region (soft tissue), cortical bone (bone), and the femoral artery 

(vessel). The generated decomposed volumes represented quantitative maps of each 

individual component, with voxel values (0 – 10,000 arbitrary units) representing the 

volume fraction (0 – 100%, respectively) or the percent contribution of the decomposed 

material within each individual voxel; the remaining percentages were comprised of a 

mixture of the two remaining components. Note that using this approach, the volume 

fractions of the three basis function materials (i.e. soft tissue, bone, and vessel) are 

constrained to sum to 100%. 

Quantitative evaluation on the accuracy of DECT decomposition accuracies was 

performed on the perfused 10 rats by quantifying the number and distribution of 

misclassified voxels within each decomposed volume (i.e. soft tissue, bone, and vessel). 

To quantify misclassified voxels, the coordinates of ROIs (500 × 500 × 500 µm, 

MicroView) within known areas of soft tissue (i.e. bicep femoris), bone (i.e. cortical 

bone), and vessel (i.e. femoral artery) were recorded. The three recorded ROIs were 

transposed within each decomposed volume of soft tissue, bone, and vessel. Mean values 

from each ROI within each decomposed component were recorded and averaged over the 

analyzed 10 samples. The sum of each tissue ROI across all decomposed volumes will 
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equal 10,000 arbitrary units or 100% (e.g. the sum of the mean values from femoral 

artery ROI transposed into the soft tissue, bone, and vessel decomposed volume will be 

10,000 arbitrary units). Therefore, after normalizing the recorded values from all 10 

samples, we can provide the percent of voxels that have been misclassified as another 

tissue. 

All statistical analysis was performed using Prism (GraphPad, v7.03, La Jolla, CA, USA). 

A statistical significance was achieved if p < 0.05. 

The use of 3D visualization software (VGStudio Max 2.0, Heidelberg, Germany) 

provided further visual enhancements, such as colorization and visual interactions 

between individual components.  

3.3 Results and Discussion 

3.3.1 DECT Design and Implementation on a Pre-Clinical Micro-
CT Scanner 

In this study, we have designed and implemented custom x-ray filtration, an automated 

filter-exchange mechanism, and fiducial marker-based image co-registration to 

successfully decompose – with high accuracy – DECT-acquired images from a pre-

clinical gantry-based cone-beam micro-CT scanner.  

Using simple silicone casting techniques, we created a silicone mold that facilitated the 

fabrication of an inexpensive and homogenous custom annular cylindrical Er-

impregnated resin x-ray filter (Figure 2.2g). Excluding material costs for the production 

of the silicone mold (~$50 for the stock Al and silicone), the cost of materials to cast a 

single Er x-ray filter was ~$6, significantly cheaper than any Er-foil counterpart. The 

homogeneity test revealed a statistical significant, but vanishingly small (given the noise 

of ± 60 HU), difference of p < 0.001. However, the overall mean and standard deviation 

of 2753 ± 29 HU suggested a homogeneously cast Er x-ray filter. 

The constructed motorized filter-exchange mechanism (Figure 3.3ac) successfully 

automated the acquisition of DECT images. This eliminated the need for operator-
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dependent filter switches and possible operator errors (i.e. incorrect filter choice and 

inadvertent sample motion) 

Easily segmented fiducial markers (Figure 3.3b) aided the semi-autonomous, sub-voxel 

image co-registration, where operator intervention was required only to choose a seed-

point for the automated centroid calculation and co-registration. Together, the automated 

DECT acquisition and image co-registration provide a nearly automated work-flow for 

accurate DECT decompositions (as shown below). 

3.3.2 DECT Results 

The six values collected from ROIs of pure soft tissue, bone, and contrast-enhanced 

vessel are summarized in Table 3.1. Implementing the previously described matrix 

factorization,5 these six values facilitated the DECT decomposition of an Er-perfused rat 

hindlimb into distinctly separate and quantitative 3D volumes of soft-tissue, bone 

(Figure 3.4c), and perfused vasculature (Figure 3.4d).  

 

 Soft Tissue 

(HU) 

Bone 

(HU) 

Contrast-Enhanced Vasculature 

(HU) 

Low Energy 37 2743 1659 

High Energy 0 1909 2059 

Table 3.1: Mean values from ROIs drawn within known pure regions of soft tissue, bone, and Er-

perfused vasculature. The represented six numbers were chosen as input parameters for the 

automated decomposition algorithms.  
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Figure 3.4: Dual-energy computed tomography (DECT) results of an Er-perfused rat hindlimb. 

Displayed are the low- and high-energy images acquired with the previously outlined DECT 

protocols and implemented automated filter-exchange mechanism and custom x-ray filtration. 

The acquired (a) low- and (b) high-energy images are decomposed automatically into their 

respective (c) bone- and (d) vessel-only components. The highly-accurate decomposition of bone 

and vessels facilitated the visualization of vessels within the cortical bone, in addition to the 

highly-vascularized sheets lining the outside and inside of each long bone, periosteum and 

endosteum, respectively. The ability to visualize these vessels manifests as femur- and tibia-like 

structures in the vessel-only image. Note the absence of the bone-mimicking calibrator from the 

vasculature image, emphasizing the success of the DECT decomposition. 
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The DECT decomposition yielded accuracies of 99.18%, 98.45%, and 99.78% in the soft 

tissue, bone, and vessel volumes, respectively (Table 3.2), as quantified from ten 

perfused rats. The visual representation of the amount and composition of misclassified 

voxels within each decomposed volume is illustrated within Figure 3.5.  

 Known Pure Components 

Soft Tissue (%) Bone (%) Vessel (%) 

 

Decomposed 

Volumes 

Soft Tissue 

 

99.18 ± 0.44 0.26 ± 0.64 0.01 ± 0.03 

Bone 0.18 ± 0.10 

 

98.45 ± 1.40 0.20 ± 0.38 

Vessel 0.66 ± 0.45 

 

1.29 ± 1.03 99.78 ± 0.42 

Table 3.2: DECT decomposition quantitative assessment. 500 × 500 × 500 µm ROIs were placed 

within known areas of soft tissue, bone, and vessels in each decomposed volume. The mean 

values of each ROI were recorded and normalized to 100 % within each individually decomposed 

volume. 

 

Figure 3.5: Graph depicting the percent of misclassified voxels after automatic DECT 

decomposition. Within each decomposed volume, misclassified voxels are comprised of the 

remaining two components. 
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Isolated visualization of the soft tissue, bone, and vessels is achieved via DECT 

decompositions. To image interactions between individual components, the decomposed 

data can be processed with 3D visualization software. In our case, the addition of colour 

to vessels (red) and bone (white) provided enhanced visualization to emphasize the 

vasculature surrounding and traversing within bone (Figure 3.6). 

 

Figure 3.6: Dual-energy computed tomography (DECT) results after processed with 3D 

visualization software to emphasize the interactions between decomposed components – vessels 

(red) and bone (white). (a) Overall view of the vasculature outside and on the surface of the 

perfused rat hindlimb. (b) An internal cross-sectional view of the area outlined in yellow from 

(a). Note the highly vascularized internal nature of bone. Yellow arrows denote the primary 

nutrient vessels of the femur and tibia. 
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3.3.3 Importance of X-Ray Filtration and Image Co-Registration 

Integration and implementation of multiple techniques (i.e. custom x-ray filtration, 

automated filter-exchange mechanism, fiducial markers, and image co-registration) are 

required for the optimal performance of DECT on pre-clinical gantry-based cone-beam 

micro-CT scanners. Any deficiency or absence in any of these techniques (i.e. spectral 

shaping and image co-registration) will result in non-ideal DECT decompositions. We 

demonstrated the importance of spectral shaping (via x-ray filtration) and image co-

registration by performing the following experiments and data re-analysis.  

Five Er-perfused rat hindlimbs were re-scanned (with the previously outlined DECT 

protocols) in the absence of customized x-ray filtration. The resulting sub-optimal 

spectral shaping and large spectral overlap are visualized in Figure 3.1 (top panel). 

Acquired low- and high-energy scans were co-registered and decomposed with a new set 

of six CT intensity values: low-energy soft tissue (45), bone (2930), vessel (2647), and 

high-energy soft tissue (45), bone (2572) and vessel (2768). The DECT decomposition 

resulted in a large number of misclassified voxels between decomposed volumes 

(Figure 3.7), visualized as “bleeding” between components. Visually, the perfused 

vasculature (Figure 3.7d) appears to have been decomposed properly; however, 

quantitative analysis revealed that only 76.23% of the vessels had been classified 

correctly (Table 3.3), with the majority misclassified as bone (Figure 3.7b). The 

remaining percentages (23.77%) and compositions of misclassified voxels are presented 

in Table 3.3 and visualized within Figure 3.8. 
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Figure 3.7: Dual-energy computed tomography (DECT) results of the Er-perfused rat hindlimb if 

no spectral shaping was implemented during the collection of the dual-energy images. Similar to 

results presented in Figure 3.4, DECT-acquired (a) low- and (b) high-energy images were 

acquired with the previously outlined DECT protocol, in the absence of the fabricated custom 

low- and high-energy x-ray filtration, co-registered images, and a separate set of six values (as 

without x-ray filtration, CT values of pure soft tissue, bone, and vessel will be different than in 

the presence of x-ray filtration) and were utilized for decomposition. Results of the 

decomposition are displayed in (c) bone- and (d) vessel-only image. Note the misclassified vessel 

voxels (i.e. “bleeding”) within the bone image. 



71 

 

 Known Pure Components 

Soft Tissue (%) Bone (%) Vessel (%) 

 

Decomposed 

Volumes 

Soft Tissue 

 

97.33 ± 0.54 0.36 ± 0.42 6.79 ± 10.53 

Bone 2.08 ± 0.81 

 

99.37± 0.59 16.96 ± 9.66 

Vessel 0.54 ± 0.61 

 

0.27 ± 0.59 76.23 ± 12.61 

Table 3.3: DECT decomposition quantitative assessment in the absence of proper x-ray filtration. 

500 × 500 × 500 µm ROIs were placed within known areas of soft tissue, bone, and vessels in 

each decomposed volume. The mean values of each ROI were recorded and normalized to 100 % 

within each individually decomposed volume. 

 

Figure 3.8: Graph depicting the percent of misclassified voxels, from Table 3.3, after automatic 

DECT decomposition. Within each decomposed volume, misclassified voxels are comprised of 

the remaining two components. 
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To establish the importance of image co-registration, data collected for Figure 3.4 was   

re-analyzed without co-registration prior to DECT decomposition. The decomposition 

results (Figure 3.9) appeared similar (i.e. misclassified voxels, “bleeding”) to those that 

have been acquired without proper spectral separation (Figure 3.7); however, the 

“bleeding” was more apparent across all decomposed volumes. Clearly, the sequentially 

acquired low- and high-energy volume images are not inherently co-registered at the sub-

voxel level; this is likely due to a combination of small (and unavoidable) variations in 

positioning of the scanner bed and gantry between scans. 
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Figure 3.9: Dual-energy computed tomography (DECT) results of the same Er-perfused rat 

hindlimb if the low- and high-energy images were not co-registered prior to decomposition. 

Similar to results presented in Figure 3.4, DECT-acquired (a) low- and (b) high-energy images 

were acquired with the previously outlined DECT protocols and custom x-ray filtration; however, 

the fiducial markers (present on the periphery of each image) were not utilizes for image co-

registration. Decomposition with these images resulted in the displayed (c) bone- and (d) vessel-

only image. Mis-registration results in the misclassification of an objects’ non-overlapping 

boundaries. As maximum intensity projections (MIP) are presented here, entire vessels and bone 

will appear to have been misclassified when this is in fact incorrect, and only the boundaries of 

these tissues have been misclassified. Note the large amount of “bleeding” of bone (and bone 

mimicking calibrator) within the vessel image, and vice versa. 
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Thus, it is apparent both visually (Figures 3.7 and 3.9) and quantitatively (Table 3.3) that 

both spectral separation and image co-registration are necessary for the proper collection 

and optimal decomposition of DECT-acquired images.  

3.3.4 Limitations 

While our work has overcome the challenges of spectral separation and image                

co-registration – required for the optimal implementation of DECT on pre-clinical cone-

beam micro-CT scanners – several optimizations and limitations remain. The addition of 

our customized x-ray filtration resulted in > 98% decomposition (Table 3.2 and 

Figure 3.5). However, optimizations of the DECT acquisition process may be achieved 

with different filter concentrations. As an example, a reduction in x-ray filtration may 

yield similar decomposition results and the concurrent increase in CNR may allow for 

reduced scan times.  

A limitation within our study is the limited performance of DECT to a single field-of-

view (FOV), as the constructed automated filter-exchange mechanism can only actuate 

the filters between two hard-coded positions. However, modifications to the filter-

exchange mechanism to actuate the sample holder or allow further travel distances of the 

x-ray filters would facilitate DECT of whole small animals.  

An additional limitation is that our perfusion procedure precludes in vivo studies; 

however, there is currently research investigating an Er-based in vivo vascular perfusion 

contrast agent.30 These future studies would also entail researching suitable DECT x-ray 

filtration compatible with the vascular contrast agent, in addition to balancing an 

acceptable x-ray dose for in vivo studies. 

3.4 Conclusion 

In this study, our implementation of DECT on a conventional pre-clinical laboratory 

cone-beam micro-CT scanner allowed for the automatic decomposition of Er-perfused rat 

hindlimbs into separate, distinct, and quantitative images of soft-tissue, bone, and 

perfused vasculature. This was achieved by sequential acquisition with two differential   

x-ray spectra, incorporating sub-voxel volumetric image co-registration between scans. 
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These scans were acquired with custom-fabricated x-ray filtration, an automated filter-

exchange mechanism, and embedded fiducial markers that allowed for image co-

registration using a rigid matrix transformation. The automated decomposition into 

specific tissue components was accurate to within 2%, facilitating quantitative analysis of 

specimen composition within 100 µm cubed voxels (i.e. 1 nL volume elements). The 

additional required hardware and software modifications did not interfere with the normal 

operation of a conventional commercial micro-CT scanner. 

As part of this novel implementation of DECT, this study presented a methodology for 

the fabrication of custom x-ray filters, optimized for the spectral shaping associated with 

an Er-based contrast agent. In the future, this fabrication technique can be modified to 

create user-specified custom (i.e. shape, elemental composition, and concentration) resin-

embedded x-ray filters of any element present in nanoparticulate powders. This range of 

customization would facilitate the application of DECT to take advantage of other 

exogenous contrast agents, or endogenous contrast within the specimen.   

The methodology presented here will have applications in a range of biomedical research, 

including the study of cardiovascular disease, respiratory conditions, cancer, and 

osteoarthritis. Our approach for optimal spectral shaping using customized filters is also 

applicable in non-biomedical research, including earth-science applications 

(e.g. geological specimens and meteorite analysis), archaeological studies, and non-

destructive testing of 3D-printed objects. Additionally, the techniques that we have 

described within our study are applicable to a large installed base of micro-CT scanning 

systems, as well as conventional multi-slice CT scanners for research applications. 
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Chapter 4  

4 Studying Femoral- and Tibial-Subchondral Bone and 
Vascular Changes Using Dual-Energy Micro-Computed 
Tomography in a Surgically-Induced Rat Hindlimb 
Model of Osteoarthritis 

4.1 Introduction 

Osteoarthritis, OA, is a chronic debilitating joint disease that affects millions of 

individuals.1-3 This joint disease affects multiple joints (e.g.. hand,4 hip,5 knee,6 and 

spine7) and is the result of cartilage and bone degeneration, presenting symptomatically 

as joint stiffening and pain. Presently, no drugs or treatments can halt or reverse the bone 

and cartilage degeneration resulting from the progression of OA.8 The absence of 

effective OA-treatments are attributed to OA’s complex and multifactorial nature; factors 

such as age,9,10 pre-existing injuries,11-13 diabetes,14-16 and genetic predisposition17,18 have 

all been shown to contribute to the development of OA. One interesting hypothesis – and 

of increasing interest – revolves around the role of microvessels within subchondral bone 

of affected joints.19-24  

Microvessels are essential for the healthy maintenance of joint-associated bone and 

cartilage; these vessels facilitate the transportation of nutrients, oxygen, and 

inflammatory molecules to the joint, in addition to removal of cellular waste products.25-

27 Cartilage is an avascular tissue (i.e. does not contain any blood vessels); thus, all of its 

resources must be provided by the highly-vascularized neighboring synovium28 and 

subchondral bone.29,30 With cartilage’s vital dependency on neighbouring tissues for its 

healthy maintenance, it has been hypothesized19,21,31 that OA may stem from changes to 

the delicate microvascular homeostasis of naïve joints, negatively impacting the 

development and physiology of the local bone and cartilage environment. A decrease in 

blood vessel density or competency may result in diminished oxygen and nutrient supply 

to the joint, and a buildup of waste products. Combined, these effects may trigger an 

inflammatory response from the synovium or subchondral bone and cause cartilage 

degeneration.19,20,32 Alternatively, an increase in blood vessel density may prompt 
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angiogenic factors to initiate the vascular invasion of cartilage – an otherwise avascular 

environment – triggering its self-degradation.33,34 While the microvessels encapsulating 

the synovial joint are known to be responsible for the majority of cartilage’s nutrients and 

oxygen,28 there has been increasing interest in the role of subchondral bone microvessels 

in the maintenance29 and degeneration20 of cartilage. Of particular interest are the distal 

femoral epiphysis and proximal tibial epiphysis, due to their proximity to the 

cartilaginous surfaces of the joint. Thus, simultaneously studying changes in subchondral 

bone and microvessel densities throughout the course of OA may provide insight into 

whether a decrease or increase in microvessels is associated with OA.  

The quantitative pre-clinical study and characterization of blood vessels within intact 

bone has proven challenging due to difficulties in imaging microvessels. Three properties 

of microvessels have impeded the simple segmentation of vessels from surrounding bone: 

(1) their small size (i.e. < 10 µm, capillaries); (2) lack of inherent contrast against 

surrounding tissue; and (3) proximity to dense bony structures. Currently, histology 

remains the gold standard for the study of microvessels; unfortunately, histology of joints 

requires the decalcification of bone prior to histological sectioning, an inherently 

destructive process, resulting in the loss of bone information. Alternatively, micro-CT is 

routinely used for the non-destructive imaging of bone;35 however, visualization of blood 

vessels requires the addition of an exogenous contrast agent.  

In Chapters 2 and 3, we characterized a highly x-ray attenuating Er-based micro-CT 

ex vivo vascular perfusion contrast agent36 and its combination with optimized dual-

energy computed tomography (DECT) on a pre-clinical, gantry-based, cone-beam micro-

CT scanner,37 respectively. Our proposed technique facilitated the automated acquisition 

of DECT volume images of Er-perfused samples and the subsequent volume-image 

decomposition, resulting in individually-segmented, co-registered, quantitative volumes 

of soft tissue, subchondral bone and microvessel density.37 Implementing this previously 

described technique with an animal model of OA will allow for the simultaneous study of 

OA-associated microvessel and subchondral bone changes.  
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Previous research in rats has shown that the combination of an anterior cruciate ligament 

transection (ACLX) and partial medial meniscectomy (PMM) to cause joint instability, 

bone-on-bone grinding during joint loading, and the eventual cartilage loss associated 

with OA.38-40 Additionally, ACLX + PMM mimics the subtle and early subchondral bone 

changes observed within human pathogenesis of OA.38 Therefore, in this study, we utilize 

the techniques developed in Chapters 2 and 3 to quantify the subchondral bone and 

microvessel density changes within the distal femoral epiphysis and proximal tibial 

epiphysis of rats that have undergone the ACLX + PMM OA-inducing surgery. Our 

experimental design extended prior-to and 8-weeks post-operatively, allowing for the 

simultaneous visualization, characterization, and quantification of subchondral bone and 

microvessels throughout the initiation and progression of OA. 

4.2 Materials and Methods 

4.2.1 Animal Model 

All animal manipulations in the following study were approved by the Animal Use 

Subcommittee of Western University (protocol #2015-018). Sprague-Dawley rats (N = 

54, Harlan Laboratories, IN, USA) of 300 - 325g (~3 months of age) were used 

throughout the experiment. Six rats were perfused (as described below) for the 0-week 

controls, the remaining N = 48 were divided in half for the ACLX + PMM and sham 

surgery groups. Within each surgery group, animals were further sub-divided (N = 6) for 

each experimental time point: T = 0 (pre-operative), 1, 2, 4, and 8 weeks post-

operatively. Previous work with this animal model of OA encompassed the 2, 4, and 8 

weeks post-operatively timepoints; however, we included a 1-week post-operative 

timepoint as we were interested in observing possible early changes to the soft tissue, 

bone, and microvessels. Animals were monitored daily and weighed prior to surgery and 

perfusion. All animals were housed in standard cages and permitted free activity with 

food and water provided ad libitum.  

4.2.1.1 Sham and OA-Induced Surgeries 

Prior to surgery, animals were anesthetized and maintained with 4% isoflurane (Baxter, 

ON, CAN) and 2 ml/min O2. All surgeries were performed solely on the right hindlimb 
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(ipsilateral), allowing the left (contralateral) hindlimb to serve as an internal control. For 

both OA-induced and sham surgeries, a parapatellar incision was made on the medial 

aspect of the joint, anterior to the medial collateral ligament. Rats that underwent the OA-

induced surgery had the anterior cruciate ligament transected (ACLX) and a portion of 

the medial meniscus removed (PMM). Both sham and ACLX + PMM surgeries had the 

incisions closed in two layers with interrupted sutures using absorbable 5-0 Vicryl sutures 

(Ethicon, Johnson & Johnson Medical Products, ON, CAN), and the skin was closed with 

subcuticular sutures using 4-0 Vicryl (Ethicon, Johnson & Johnson Medical Products, 

ON, CAN). 

All animals were given antibiotics and analgesics pre- and post-operatively. Antibiotics 

(17.8 mg/kg Ampicillin, Novopharm®, ON, CAN) were administered intramuscularly. In 

compliance with standard operating protocols set by the Animal Care and Use Committee 

at Western University, the analgesic buprenorphine (0.05 mg/kg, Vetergesic Multidose, 

Champion Alstoe Animal Health, ON, CAN) was administered subcutaneously every 

~10 hours over 48 hrs post-operatively.  

4.2.2 Er-Based Contrast Agent and Curing Agent Preparation  

Preparation of the Er-based suspension has been previously outlined in Chapter 2.36 

Briefly, perfusion required the combination of two components: an Er-based suspension 

and a curing agent.  

The Er-based vascular contrast agent (described in Chapter 2) is comprised of erbium 

oxide nanoparticles (Er2O3 NPs, Nanostructured and Amorphous Materials, TX, USA) 

suspended within a two-part clear silicone elastomer (Microfil MV-132, FlowTech Inc., 

MA, USA). The Er-based contrast agent was prepared in 30 mL batches, a sufficient 

volume for rat hindlimb perfusions. The Er-suspension was comprised of 4.0 g of mortar 

and pestle ground uncoated Er2O3 NPs mixed into MV-Diluent (17.47 mL) and MV-132 

(8.73 mL) in a 2:1, respectively. The remaining 3.8 mL was comprised of the homemade 

curing agent, as described below, added immediately prior to perfusion. To ensure the 

homogeneous distribution of Er2O3 NPs within the silicone elastomer, the suspension was 

probe sonicated (Branson Digital Sonifier 450D with 13 mm tapped horn, Crystal 
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Electronics, ON, CAN) for a total of 35 minutes with 25% amplitude and a duty cycle of 

30 s ON followed by 10 s OFF. The contrast agent was prepared at least an hour in 

advance and decanted just prior to use, to remove the larger settled aggregates. 

To ensure the consistent curing of our Er-based suspension, the curing agent was made 

in-house and was comprised of 40% (w/w) dibutyltin dilaurate (Sigma Aldrich, MI, 

USA) and 60% (w/w) tetraethyl orthosilicate (Sigma Aldrich, MI, USA) mixed with a 

magnetic stirrer until a homogeneous transparent pale-yellow mixture was achieved.  

4.2.3 Animal Perfusion 

The perfusion of animals and fabrication of a custom catheter have been previously 

described in Chapter 3.37 In brief, at the time of perfusion, animals were weighed, 

anesthetized and maintained on 4% isoflurane (Baxter, ON, CAN) with 2 mL/min O2. A 

jugular injection of heparin (500 µL, Sandoz, QC, CAN) was administered to prevent 

blood clotting. Heparin circulated for 5 minutes prior to making a midline incision to 

expose the abdominal organs. The organs were displaced to clearly reveal the aorta and 

inferior vena cava (IVC). Gauze was then used to carefully separate the membrane 

covering the aorta and IVC. Two lengths of braided silk thread (~ 10 cm, Ethicon, 

Johnson & Johnson Medical Products, ON, CAN) were passed between the aorta and 

IVC. One length of thread was used to tie off the aorta, below the renal arteries. Fine-

tipped forceps were inserted into a cut made perpendicular to the aorta; spreading the 

forceps allowed the insertion of the custom catheter. The catheter tip, maneuvered until 

~1-2 cm upstream of the aortic bifurcation, was held securely in place with the tied-off 

second length of thread. The IVC was cut to allow for circulatory drainage, as the animal 

was exsanguinated with ~ 250 mL of 2% heparinized saline prior to perfusion of the Er-

based vascular contrast agent. 

Just prior to contrast agent perfusion, 3.8 mL of the homemade curing agent was added to 

the Er-based suspension and vortexed (VWR® Fixed Speed Vortex Mixer, PA, USA) 

continuously for 8 minutes. The entire mixture was injected into an empty saline bag and 

hung 175 cm above the animal, providing an equivalent pressure of 129 mmHg. The 
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contrast agent was perfused until cured, ~ 37 minutes post-addition of curing agent. The 

rat hindlimb region was fixed in 10% formalin for at least 2 weeks prior to DECT scans.  

Following fixation, hindlimbs were dislocated at the femoral head, excised, and placed 

within 50 mL tubes with 10% formalin. After another week in formalin (to ensure 

complete fixation throughout the entire hindlimb), samples were stored in 70% ethanol 

until DECT-scanned. 

4.2.4 Dual-Energy Micro-CT Scanning 

Details regarding the entire dual-energy micro-CT (DECT) procedure (i.e. acquisition, 

image co-registration, and image analysis) have been previously described in Chapter 3.37 

Briefly, post-mortem DECT was performed on a pre-clinical, gantry-based, cone-beam, 

micro-CT scanner (GE eXplore Vision120, GE HealthCare, ON, CAN). High-energy 

scans were acquired at 90 kVp, 40 mA, with an additional annular cylindrical Cu x-ray 

filter of total pathlength 0.48 mm. Low-energy scans were collected at 70 kVp, 50 mA, 

using a custom fabricated Er-embedded resin x-ray filter with effective pathlength of 

0.064 mm. Each energy scan was collected over 1200 projections, at 0.3° increments over 

360°, 16 ms per view acquisition time, and an average of 10 acquisitions per view 

projection. Scan time at each energy was ~ 1. 5 hrs; thus, the total time required for a 

DECT scan of a single sample was approximately 3 hrs. All data were collected with an 

isotropic voxel spacing of 50 × 50 × 50 µm and subsequently rebinned 2 × 2, resulting in 

full three-dimensional (3D) micro-CT volumes of 100 × 100 × 100 µm isotropic voxel 

spacing. The reconstructed micro-CT volumes were calibrated into Hounsfield (HU) 

units wherein the CT value of an embedded water and air calibrator set to 0 and -1000 

HU, respectively.  

Fiducial marker beads (Teflon®, polytetrafluoroethylene (PTFE), Product Components 

Corporation, Martinez, CA, USA) within the sample holder were used to achieve sub-

voxel image co-registration between the high- and low-energy acquired micro-CT 

volumes.  Decomposition of the DECT-acquired images was performed through matrix 

factorization,41 and resulted in individually segmented and quantitative volumes of soft 

tissue, bone, and vessel. Within each decomposed volume, signal intensity values were 
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scaled such that integer grey-scale voxel values (0 – 10,000) represented the voxel 

volume fraction (0 – 100%) of the respective component. 

4.2.4.1 Partial Volume Effect (PVE) 

Distinguishing between individual microvessels (i.e. capillaries, < 10 µm) is not possible 

with DECT-acquired images with (100 µm)3 voxels due to partial volume effects (PVE). 

However, previous research42-44 has suggested that DECT may be partially resistant to 

PVE, as DECT may still allow for the accurate detection and quantification of 

microvessel densities over varying spatial resolutions. To quantitatively evaluate PVE on 

DECT decompositions, we compared the same volume-of-interest (VOI) among five rat 

hindlimbs that were DECT scanned with 33 µm isotropic voxel spacing and subsequently 

rebinned 2 × 2, 3 × 3, and 4 × 4, resulting in isotropic voxel spacings of 66, 99, and 132 

µm, respectively.  

For this study of partial volume effects, DECT scans were acquired on a rotating-stage 

specimen scanner (GE Locus SP, GE Healthcare, London, ON, CAN). The high-energy 

image was acquired at 90 kVp, 90 µA, and with additional filtration of 0.254 mm Cu and 

0.254 mm Al. The low-energy scans were performed at 64 kVp, 125 µA, and an 

additional 0.075 mm Er-foil x-ray filter. Both x-ray energy scans were collected over 720 

projections, at 0.5º increments over 360º, 1600 ms exposure time per view, and an 

average of 20 views per projection. Images were reconstructed with isotropic voxel 

spacing of 33 × 33 × 33 µm subsequently rebinned to 66, 99, and 132 µm (as previously 

stated). Individual energy scans were approximately 8 hr each, totaling ~ 16 hrs for a 

DECT scan of a single sample. Reconstructed volumes were calibrated into HU units 

using embedded air and water calibrators prior to DECT decomposition.  

4.2.5 Data Analysis 

4.2.5.1 DECT and PVE Analysis 

Studying the subchondral bone and microvessel density within the distal femoral 

epiphysis and proximal tibial epiphysis required the generation of custom volumes-of-

interest (VOI). Within each high-energy volume, 2D contours were generated by an 

operator (MicroView v2.12, GE HealthCare, ON, CAN) by following the cortical shell 



86 

 

and growth plate (Figure 4.1A). This contouring process was repeated every 200 μm, 

until the entire joint had been encompassed. Interpolation between the individual 2D 

contours resulted in a 3D VOI (Figure 4.1B). The derived VOI was transposed within 

each inherently co-registered decomposed volume (soft tissue, bone, and vessel, 

Figure 4.1C and D), and mean values were recorded from both the operated and non-

operated hindlimbs from all N = 54 rats.  

Previous research45 has demonstrated that inter-animal variability can be a confounding 

factor when analyzing statistical vascular differences between animals of differing 

surgery groups and timepoints. To overcome the challenge of inter-animal variability, at 

each timepoint the voxel volume fraction results of soft tissue, subchondral bone, and 

vascular density measurements have been presented as a comparison between the 

ipsilateral (operated) and respective contralateral (non-operated, i.e. control) hindlimbs. 

Using the mean value acquired from a 500 × 500 × 500 µm ROI within the femoral 

artery, a paired t-test was performed to ensure the non-significant differences in contrast 

enhancement between the ipsilateral and contralateral hindlimbs of each rat. Using the 

same data, a linear regression analysis was performed to examine whether consistent 

contrast enhancement was achieved across the entire 8 – week post-operative timeframe.  

This evaluation of contrast enhancement within a large feeding vessel was performed as 

part of routine quality assurance, to verify that the perfusion and scanning procedure was 

stable over the course of the study. 

To evaluate the effects of PVE on DECT, the voxel volume fractions of identical VOIs 

(as described above) were compared across varying voxel spacings (i.e. 33, 66, 99, and 

132 µm). The same six CT numbers required for DECT decomposition (i.e. mean values 

of soft tissue, bone, and vessel at both low- and high-energy) were used for each rebinned 

volume. To ensure that the same custom VOI, generated from the 33 µm native 

resolution volume, was applied to each subsequent rebinned volume, interpolation of all 

rebinned volumes to the native isotropic voxel spacing of 33 µm was performed. The 

mean values of custom VOIs transposed within bone- and vessel-only DECT 

decomposed images were collected from three rat hindlimbs, normalized, and analyzed 

within Prism (Graphpad v7.03, La Jolla, CA, USA).  
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Figure 4.1: Multi-planar reformatted images of a DECT-scanned perfused rat hindlimb. (A) 

Two-dimensional (2D) contour around the distal femoral epiphysis, drawn within the           

DECT-acquired high-energy x-ray image. (B) 3D volume-of-interest (VOI) generated from the 

extrapolation of 2D contours drawn manually every 200 µm throughout the joint. The 3D VOI 

was then transposed within the co-registered, DECT-decomposed (C) bone-only and (D) vessel-

only volumes. Mean values within each 3D VOI were collected and recorded. 
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4.2.5.2 Histological Analysis 

The investigation of OA-related physiological markers (i.e. lesions, and cartilage loss) 

was performed through the histological examination of two perfused rat knee joints. To 

prepare samples for histological analysis, perfused hindlimbs were first decalcified prior 

to serial sectioning and staining. 

The process of rat hindlimb decalcification encompassed a 5-day long procedure. On day 

1, soft tissue and muscle surrounding the knee joint were trimmed and removed (with 

care taken near the joint capsule) to aid penetration of the decalcification solution. 

Trimmed hindlimbs were submerged within ~35 mL of decalcifying solution (Formical-

2000, Fisher Scientific, NH, USA) and placed on a rocking platform overnight. On day 2, 

tissue and bone were further trimmed to within ~ 1 –2 cm above and below the joint 

capsule. Samples were placed back in the same decalcification solution and rocked 

overnight. On day 3, joints were bisected along the medial aspect of the tibia. To 

facilitate the bisection and provide clean, straight, and consistent cuts, a custom           

easy-to-use guillotine (Figure 4.2) was constructed. Bisected sections were submerged 

within fresh ~35 mL decalcification solution and rocked for a day (i.e. day 4). On day 5, 

samples were rinsed twice in distilled water for 5 minutes each and stored within 70% 

ethanol at 4º C until histological processing.  

Decalcified and bisected joints were dehydrated through a series of increasing alcohol 

concentrations, in preparation for paraffin embedding. Histological sectioning of 

embedded samples involved the collection of five 6 µm serial sections followed by a 

100 µm tissue trim, until a total of ~ 120 µm of tissue had been accumulated. Selected 

sections were stained with Toluidine blue to assess the presence of OA. Toluidine blue 

preferentially stains proteoglycans and glycosaminoglycans (i.e. major components of 

cartilage), and the intensity of the Toluidine blue staining reflects cartilage health (i.e. 

weak Toluidine blue stains implies reduced proteoglycans and glycosaminoglycans or 

degraded cartilage health and vice versa).46  
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Figure 4.2: Constructed custom rat knee bisector. (A) Arbor press with a modified insert (black 

arrows) that can accommodate and hold razor blades firmly via a contoured clam shell design. (B) 

Assembled knee bisector. Cutting surface (polyoxymethylene, Delrin®) is removable and 

customizable (i.e. implementation of customized anatomical indentations). 

 

4.2.5.3 Statistical Analysis 

All image analysis was performed with MicroView software (v2.12, GE Healthcare, 

London, ON, CAN). Subsequent statistical analysis was done using Prism (Graphpad 

v7.03, La Jolla, CA, USA), and statistical significance was achieved if p < 0.05.  
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4.3 Results and Discussion 

The successful complete perfusion of rat hindlimbs and selected ROIs (i.e. distal femoral 

epiphysis and proximal tibial epiphysis) was demonstrated via the contrast enhanced 

visualization of the epiphyseal (Figure 4.3A and B), metaphyseal (Figure 4.3C and D) 

and primary nutrient arteries of long bones (Figure 4.3C and D). The previously 

mentioned vessels represented the main blood supplies for the distal femoral epiphysis 

and proximal tibial epiphysis. Within our study, all N = 56 rats exhibited contrast 

enhanced epiphyseal, metaphyseal and primary nutrient arteries. Results of a paired t-test 

between the ipsilateral and contralateral hindlimbs within each rat, to evaluate uniformity 

of perfusion within each rat, showed no significant differences (p = 0.9275, Figure 4.4). 

With no statistical different between ipsilateral and contralateral hindlimbs, values at 

each time-point were averaged prior to linear regression analysis. Results of this analysis 

revealed a non-statistically significant deviation from a slope of zero (p = 0.0828, 

Figure 4.4).  
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Figure 4.3: Maximum intensity projections (MIP) through a 300 µm-thick “slab” of the DECT-

acquired high-energy image volume, demonstrated the success of the rat hindlimb perfusions. 

Epiphyseal nutrient arteries, and the associated foramen (red arrows) feeding the distal femoral 

epiphysis (A) and proximal tibial epiphysis (B). Another source of blood vessels can be found 

below the growth plate, as demonstrated in femur (C) and tibia (D), with red arrows denoting the 

metaphyseal nutrient arteries and their associated foramens. Yellow arrows denote the primary 

nutrient arteries (i.e. one major source of blood supply). 
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Figure 4.4: Graph depicting the contrast enhancement of the femoral artery across the entire 8-

week long study. The mean femoral arterial values from 500 x 500 x 500 µm ROIs were collected 

from both hindlimbs of all perfused rats. A paired t-test revealed no statistical differences (p = 

0.9275) between ipsilateral and contralateral hindlimbs. Mean values, from both hindlimbs, at 

each time point (T = 0 (pre-operatively), 1, 2, 4, and 8 weeks post-operatively) were averaged and 

plotted with their standard deviation.  Linear regression analysis reported across the entire study 

duration revealed no statistically deviation from a slope of zero (p = 0.0828). 

 

With the consistent and uniform perfusion across all rats, we acquired DECT scans of 

both ipsilateral (operated) and contralateral (non-operated) hindlimbs from all rats, and 

decomposed the acquired low- and high-energy volumes (Figure 4.5, top panels) into 

their respective soft tissue, bone, and vessel volumes (Figure 4.5, bottom panels). To 

visually emphasize the consistent success of our perfusion and DECT technique, we have 

also presented radiographic projections through decomposed bone-, vessel-only, and a 

composite image from selected samples of each surgery group and time-point 

(Figure 4.6).  
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Figure 4.5: Maximum intensity projections (MIP) through a perfused rat hindlimb that has been 

DECT-scanned. Top panels display the DECT-acquired low- and high-energy volumes. The 

automated DECT decomposition results in visually distinct bone and vessel-only images (bottom 

panels). 
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Figure 4.6: A representative figure displaying the consistent and uniform perfusion of every 

sample, regardless of surgery and time-point. Presented are x-ray projections through the bone- 

(white), vessel-only (red), and a composite overlay of the decomposed volumes of a sample from 

the sham or ACLX + PMM surgery group and at every time-point. 
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Following the successful perfusion and DECT-decomposition of all rats, five selected rats 

were DECT-scanned at a higher resolution (33 µm) to evaluate the effects of PVE. The 

results of a repeated-measures, nonparametric, one-way ANOVA, and Dunn’s post-hoc 

multi-comparative analysis on the measured microvessel voxel volume fractions from the 

distal femoral epiphysis and proximal tibial epiphysis are displayed in Figure 4.7. The 

statistical analysis revealed significant differences (p<0.05) between voxel volume 

fractions recorded from volumes reconstructed at 33 and 132 µm, in both the femur and 

tibia. Thus, it is apparent from our results that DECT is affected by PVE between the 

extremes of the experimented rebinned voxel spacing range (i.e. 33 and 132 µm). 

However, as an assurance, all samples within this study were scanned with identical scan 

parameters, and identically decomposed and analyzed; thus, the results are directly 

comparable with one another and should not be affected by PVE.  

 

 

Figure 4.7: Graphs depicting the results of partial volume effects (PVE) on dual-energy micro-

CT (DECT). Graphs displays the femur and tibia mean values and standard deviations of voxel 

volume fractions collected from ROIs (i.e. distal femoral epiphysis and proximal tibial epiphysis) 

within five perfused rats across natively-collected 33 µm and rebinned 2 × 2, 3 × 3, and 4 × 4 to 

provide effective voxel spacings of 66, 99, and 132 µm, respectively. Repeated-measures, 

nonparametric, one-way ANOVA, with Dunn’s post-hoc multi-comparative analysis, revealed a 

statistical difference (p<0.05) between voxel volume fractions recorded at 33 and 132 µm in both 

the femur and tibia. 
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From each high-energy acquisition, operator-generated VOIs (Figure 4.1) of the distal 

femoral epiphysis and proximal tibial epiphysis were transposed within each of their 

respective inherently co-registered decomposed volumes (i.e. soft tissue, bone, and 

microvessel) for both ipsilateral and contralateral hindlimbs. The average mean value was 

collected from each individual VOI and arranged by decomposed component, anatomical 

location, hindlimb and surgery group and plotted against time (i.e. T = 0 (pre-

operatively), 2, 4, and 8-weeks post-operatively). Presented are the results for the 

microvessels (Figure 4.8), subchondral bone (Figure 4.9), and soft tissue (Figure 4.10).  

Results of a two-way ANOVA analysis on the microvessel voxel volume fractions from 

the ipsilateral (operated) and contralateral (non-operated) hindlimbs of the ACLX + 

PMM surgery group revealed a statistical increase in the ipsilateral tibia 1 – week post-

operatively (p = 0.0472, Figure 4.8). No further significant differences (p > 0.05) were 

revealed between hindlimbs at the remaining time-points; at 2 – weeks post-operatively 

and for the remainder of the experimental duration, the microvessel density returned and 

remained at baseline levels (i.e. 0 – weeks, pre-operatively) (Figure 4.8). Thus, our 

results suggest that angiogenesis within the ipsilateral tibia may be a result of an acute 

inflammatory response immediately following surgery.  

Analysis of subchondral bone voxel volume fractions (Figure 4.9), of the chosen ROIs, 

between the ipsilateral and contralateral hindlimb of the ACLX + PMM surgery group 

revealed no statistical differences (p > 0.05, two-way ANOVA, Prism) for each 

individual time point. Thus, it appears that the combination of ACLX + PMM may not 

significantly impact subchondral bone voxel volume fractions within our chosen ROIs of 

the distal femoral epiphysis and proximal tibial epiphysis. This was surprising, as 

previous research by our group using the same ACLX + PMM model has reported 

volumetric bone mineral density (vBMD) changes between the ipsilateral and 

contralateral hindlimbs.38 In the current study, the absence of detectable significant 

changes in subchondral bone may be due to differences in ROIs used between the studies. 

McErlain et al., utilized cylindrical ROIs with a 0.75 mm diameter and depth of ~ 1 mm 

in the subchondral bone. Conversely, in our study we included some of the cortical shell 

outlining the distal femoral epiphysis and proximal tibial epiphysis, in an effort to record 
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vessels that are known to penetrate the cortical shell and invade cartilage. Consequently, 

the dense cortical shell may mask subtle changes to the subchondral bone densities and 

provide overestimated voxel volume fractions of subchondral bone for our studied ROIs 

(i.e. distal femoral epiphysis and proximal tibial epiphysis). 

 

Figure 4.8: Results of the vessel voxel volumes fractions within custom 3D VOIs (Figure 4.1) of 

the ipsilateral (operated) and contralateral (non-operated) hindlimbs’ distal femoral epiphysis and 

proximal tibial epiphysis from both sham and ACLX rats over the 8-week study period. Each bar 

represents the mean and standard deviation of N=6 rats per time-point.    
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Figure 4.9: Results of the bone voxel volumes fractions within custom 3D VOIs (Figure 4.1) of 

the ipsilateral (operated) and contralateral (non-operated) hindlimbs’ distal femoral epiphysis and 

proximal tibial epiphysis from both sham and ACLX rats over the 8-week study period. Each bar 

represents the mean and standard deviation of N=6 rats per time-point.    
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Figure 4.10: Results of the soft-tissue voxel volumes fractions within custom 3D VOIs 

(Figure 4.1) of the ipsilateral (operated) and contralateral (non-operated) hindlimbs’ distal 

femoral epiphysis and proximal tibial epiphysis from both sham and ACLX rats over the 8-week 

study period. Each bar represents the mean and standard deviation of N=6 rats per time-point.    

 

To validate the sham surgery as an external control, we also performed a two-way 

ANOVA statistical analysis on the voxel volumes fractions of microvessels (Figure 4.8), 

bone (Figure 4.9), and soft tissue (Figure 4.10) obtained from ROIs within both the 

ipsilateral and contralateral hindlimbs. For any of the decomposed components, our 

results revealed no significant differences (p > 0.05) between the ipsilateral (operated) 

and contralateral hindlimbs (non-operated) of the sham surgery group within each 
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individual timepoint. Therefore, the sham surgery served as an effective external control 

in this study.  

As an additional comparison, using data collected from the ACLX + PMM surgery 

group, we compared the microvessel voxel volume fractions of the distal femoral 

epiphysis and proximal tibial epiphysis of both ipsilateral and contralateral hindlimbs 

against the sham control. Analysis from a two-way ANOVA revealed no statistical 

differences (p > 0.05) when comparing the ipsilateral or contralateral femurs and tibias 

between both surgery groups (Figure 4.11). Of interest is the lack of significance between 

the 1 – week ipsilateral tibias, as a significant increase was shown when comparing the 

ipsilateral and contralateral hindlimbs of the ACLX + PMM surgery group (Figure 4.8). 

This non-significance against the sham ipsilateral tibia may suggest that in the ACLX + 

PMM group the release of inflammatory molecules post-surgery may be systemic, 

causing an increase of angiogenesis in the ipsilateral hindlimb and a decrease within the 

respective contralateral hindlimb. These results are not surprising, as previous research 

has shown the increase in genetic expression,47,48 and inflammatory factors post-

surgery.49-51 

In contrast to simple greyscale thresholds on single-energy scans, we have shown that the 

ability to mathematically decompose DECT-acquired volumes into individually 

segmented and quantitative components, is resistant to PVE. To our knowledge, this 

allowed our study to be the first to accurately quantify the microvessel density within the 

distal femoral epiphysis and proximal tibial epiphysis of intact rat knee joints. The 

average microvessel density of rats perfused at 0 – week (i.e. pre-operatively) in the distal 

femoral epiphysis and proximal tibial epiphysis were 7.7 ± 1.5% and 7.2 ±1.3%, 

respectively (Figure 4.8).  
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Figure 4.11: Results of a comparison between microvessel voxel volumes fractions of the 

ipsilateral (operated) and contralateral (non-operated) hindlimb between sham and ACLX + 

PMM surgery groups. Each bar represents the mean and standard deviation of N=6 rats per time-

point.    

Finally, histological sectioning and Toluidine blue staining confirmed the progression of 

OA. Degeneration of the articular cartilage, as noted by a reduction in blue staining 

(i.e. reduced proteoglycan and glycosaminoglycan concentration) was clearly present in 

both the femur and tibia (Figure 4.12B, D, and F) of a hindlimb that underwent the 

ACLX + PMM surgery. Conversely, a sample histological section taken from a 1 – week 

post-operative sham operation revealed healthy cartilage (Figure 4.12A, C and E).   
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Figure 4.12: Microscopic histological staining (Toluidine Blue) results of rat hindlimbs that have 

undergone either a sham and ACLX + PMM surgery, 1 - week (A, C, and E) and 2-week (B, D, 

and F) post-operatively, respectively. 10x magnification of the medial aspect of the joint, 

displaying the intact (sham, A) or degenerated (ACLX + PMM, B) cartilaginous surfaces of the 

femur (top) and tibia (bottom) of rats. 40x magnification of outlined regions-of-interest (ROI) 

within the femur of sham (C) and ACLX + PMM (D) rats. 40x magnification of outlined ROIs 

within the tibia of sham (E) and ACLX + PMM (F) rats. Note the loss of consistent Toluidine 

Blue staining throughout the entire cartilage layer in (D) and (F), as well as a reduction in 

chondrocyte organization, both indicative of cartilage degeneration. 
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4.3.1 Limitations 

The main limitation of our study lies in fact that the Er-based vascular perfusion contrast 

agent is strictly limited for use with post-mortem samples.36 This limitation inhibits the 

study of changes within the same vascular- and bone-networks within an animal, for 

extended periods of time (i.e. longitudinal studies). However, current developments into 

an in vivo vascular contrast agent,52 and corresponding optimized DECT protocols, can 

overcome this challenge and is the topic of future studies within our group.  

While the results of our statistical analysis of partial volume effects (PVE) on DECT 

revealed a significant difference (p<0.05) between voxel volume fractions recorded from 

a 33 µm and 132 µm reconstructed volume, a general downward trend can be observed in 

Figure 4.7. Thus, it may be possible that results derived from our data (which was 

reconstructed with 100 µm voxel spacing) may slightly underestimate the true 

microvessel volume fractions. Acquiring DECT scans at 33 µm would provide a more 

accurate representation of the vessel density (Figure 4.4); however, the time required to 

scan all 100+ samples within this study would be significantly increased (i.e. 16 hr DECT 

scan at 33 µm in comparison to 3 hr DECT scan at 100 µm per sample).  

An additional limitation is the lack of an OARSI score within the rat hindlimbs. The 

osteoarthritis research society international (OARSI) score is a standardized measurement 

of OA severity within a rat joint. In this study, a small subset of rat joints was processed 

for histological evaluation due to the large amount of time required to prepare all 108 

samples for decalcification, histological sectioning, staining, and OARSI grading. 

However, the surgical model of OA used in this study that has been previously well-

characterized,38,39 and additional histological analysis can be carried out on the remaining 

decalcified specimens. 

In this study, the VOIs were limited to the distal femoral epiphysis and proximal tibial 

epiphysis, due to their proximity to articular cartilage, known importance in nutrient and 

oxygen supply to cartilage, and well-defined contours. However, the synovium53-55 and 

patellofemoral region56-58 are also known to be required for the healthy maintenance of 

the joint.53-55 As DECT-decomposition of the synovial membrane and patellofemoral 
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regions were simultaneously acquired with the data presented in this study, research into 

the associated bone and microvessel changes within these regions is a topic of further 

research.  

4.4 Conclusion 

In an ACLX + PMM surgical model of OA, 8-week post-operative study period, and 

chosen ROIs directly underlying the articular cartilage of the knee joint (i.e. distal 

femoral epiphysis and proximal tibial epiphysis), we did not observe any significant 

overall changes to the microvessel voxel volume fraction, suggesting that the subchondral 

microvasculature did not play a significant role in our study of OA. Thus, future studies 

using the same OA model and timeline as proposed in this study may benefit by 

examining the microvessel changes within the neighbouring vascularized synovial 

membrane and patellofemoral region.  

Overall, in this study, we utilized a previously characterized combination technique – a 

highly attenuating x-ray contrast agent36 with compatible, optimized DECT37 – to non-

destructively, automatically and objectively segment individual quantitative volumes of 

soft tissue, subchondral bone, and microvessels within a surgically-induced rat hindlimb 

model of OA. While the current implementation of this combination imaging technique 

cannot facilitate the visualization and resolution of individual microvessels (i.e. 

capillaries, < 10µm), it provided quantitative measurements of tissue volume from 1 nL 

voxels (i.e. 100 µm cubic voxels). This high degree of sensitivity allowed us to detect an 

inflammatory or dilatory response 1-week post-ACLX + PMM surgery within the tibias 

of operated hindlimbs, represented as a significant increase (p=0.0472) in microvessel 

voxel volume fraction  

The combination technique (i.e. contrast agent and optimized DECT) utilized within this 

study provided the first-of-its kind ability to simultaneously study the soft tissue, bone, 

and perfused vessels within an intact sample. However, the imaging and analysis 

methodologies presented in this study are not limited to OA, but can be advantageous for 

the examination of interactions between different tissues in vascular-related diseases: 

neurological,59 cardiovascular,60,61 musculoskeletal,60,62,63 and oncological.64-66  
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Chapter 5  

5 Conclusion and Future Directions 

5.1 Summary of Results 

Osteoarthritis (OA) affects ~10% of Canadians over the age of 15,1 making it a disease 

no longer just a concern among the aging population. Currently, there are no therapeutic 

treatments or disease modifying osteoarthritic drugs (DMOADs) that can halt and reverse 

the bone and cartilage damage caused by OA.2,3 The absence of preventative and 

reversing treatments is due to a lack in knowledge regarding the initiation and 

progression of OA. Multiple confounding factors such as age,4,5 diabetes,6-8 obesity,4,6,9 

and prior injuries10-12 are responsible for the complexity surrounding OA. Therefore, 

research into OA is beneficial towards understanding the disease and revealing new 

targets for drug development.  

Recently, a re-emerging OA hypothesis revolves around subtle changes to the delicate 

microvascular environment surrounding joints.13,14 Due to the avascular (i.e. lack of 

vessels) nature of cartilage, it is known that their nutrient and oxygen must be supplied 

from the highly-vascularized neighbouring synovium and subchondral bone.15 Therefore, 

slight variations (i.e. a decrease or increase) in the homeostatic vascular density of these 

critical structures (i.e. synovium and subchondral bone) may negatively impact and 

promote their degeneration and the degeneration of cartilage.16 Nutrients and oxygen 

from the synovium are known to play an important role in the maintenance of cartilage; 

however, there is a lack of research in understanding the role of subchondral bone 

microvessels, more specifically, the distal femoral epiphysis and proximal tibial epiphysis 

as they neighbor cartilage.  

Unfortunately, the small size of microvessels (i.e. 5 – 10 µm for capillaries), lack of 

contrast against surrounding tissues, and proximity to dense bony structures, have 

hindered their segmentation, characterization, and quantification. Pre-clinical micro-CT 

is already widely available and routinely used for the visualization and characterization of 

dense objects, such as bone;17,18 in combination with an exogenous vascular contrast 
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agent,19,20 simultaneous visualization of bone and vessels can be achieved. However, 

commercially contrast agents provide bone-like greyscale values – hindering their 

automatic segmentation from one another.21 Thus, we created a custom ex vivo vascular 

perfusion contrast agent that provides significantly higher contrast than commercially 

available agents, and is compatible with dual-energy micro-computed tomography 

(DECT). The advantageous use of DECT allows us to automatically decompose DECT-

acquired volumes into separate and quantifiable 3D volumes of soft tissue, subchondral 

bone, and vessels. 

With a highly x-ray attenuating contrast agent and optimized DECT, we combined them 

with a well-characterized surgically induced rat hindlimb model of OA.22,23 The 

combination of an anterior cruciate ligament transection (ACLX) and partial medial 

meniscectomy (PMM) has been shown to mimic the subtle subchondral bone changes 

exhibited in early-onset OA within humans, making it ideally suited for the study of 

microvessel changes. The combination of a custom vascular contrast agent and DECT 

with a surgically-induced rat hindlimb model of OA (i.e. ACLX + PMM) and 

observational period of 8 – weeks post-surgery, facilitated the simultaneous study of 

subchondral bone and microvessel density changes during the initiation and progression 

of OA. 

In Chapter 2, titled “Erbium-Based Perfusion Contrast Agent for Small Animal 

Microvessel Imaging”, a methodology was described to facilitate the fabrication of a 

custom ex vivo vascular perfusion contrast agent comprised of homogeneously 

incorporated erbium oxide (Er2O3) nanoparticles within a two-part silicone elastomer 

carrier media. Erbium, a lanthanide, was chosen as the base of the contrast agent due to 

its high x-ray absorption and optimally placed absorption K-edge energy (57.5 keV) for 

DECT. To break up naturally large aggregates of Er2O3, ultrasonic cavitations was 

employed to facilitate the suspension of nano-sized Er2O3 aggregates within the prepared 

media. Particle sizes were confirmed with transmission electron microscopy (TEM) and 

dynamic light scattering (DLS, 64.8 ± 11.1 nm). A measured viscosity of 19.2 mPa∙s 

ensured the perfusion of the prepared suspension into microvessels (i.e < 10 µm). To 

demonstrate the efficacy of the custom contrast agent, whole intact mice were perfused 
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and subsequently scanned with micro-CT. The results of multiple scanned mice revealed 

perfused vasculature with significantly higher contrast (> 4000 HU) in comparison to 

surrounding skeletal structures (2359 ± 207 HU) and a commercially available lead-based 

contrast agent (MV-122, 2683 ± 77.6 HU). The significantly enhanced contrast allowed 

for the easier visualization of vessels running through foramens (i.e. passages that allow 

vessels to enter bone), and within long bones (i.e. femur and tibia). Micro-CT scans of a 

perfused mouse kidney at a higher resolution (i.e. ~ 5 µm) revealed perfused glomeruli 

(i.e. capillary beds) and afferent arterioles (~ 13 µm), validating the ability of the custom 

Er-based contrast agent to perfuse microvessels.  

Dual-energy micro-CT facilitates the automatic segmentation of materials-of-interest 

based on the change in their x-ray attenuation coefficient between two x-ray energies. 

The ability to differentiate components can be further enhanced by shifting the CT 

scanners’ mean energy above and below the absorption K-edge of the material of interest. 

However, the lack of preferential x-ray filtration on pre-clinical cone-beam laboratory-

based micro-CT scanners results in poor spectral separation. The addition of metal foils, 

acting as x-ray filters, can vastly improve spectral separation; yet, this requires opening 

and modifying the gantry. To avoid machine modifications, in Chapter 3, entitled “Dual-

Energy Computed Tomography for a Gantry-Based Pre-Clinical Cone-Beam Micro-CT 

Scanner”, we developed techniques to fabricate customizable in-bore x-ray filters, 

automate DECT-acquisition, image co-registration, and decomposition algorithms for 

conventional pre-clinical cone-beam micro-CT scanners. As previously outlined in 

Chapter 2, Er has an absorption K-edge energy (57.5 keV) located near the mean x-ray 

energy of micro-CT scanners (~42.7 keV) that operate at maximum x-ray tube potential 

of 90 kVp. Using Er2O3 nano-powder and simple silicone molding techniques, we 

successfully fabricated a custom cylindrical annular low-energy Er-embedded resin x-ray 

filter. A removable cylindrical annular-shaped filter would negate the need of modifying 

the scanner, and would provide x-ray filtration irrespective to gantry rotation. Combined 

with an identically shaped high-energy Cu filter, these x-ray filters would provide the 

necessary spectral separation for DECT. We mounted the x-ray filters on a custom 

automated filter-exchange mechanism that automatically switches x-ray filters within the 

scanner bore in between low- and high-energy scans. To correct for inherent gantry 
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motions and non-reproducible bed movements, fiducial marker beads embedded within 

the sample holder aided in the sub-voxel co-registration between the low- and high-

energy volumes. The combination of all the previously outlined developments resulted in 

the successful implementation of optimized DECT for an Er-based contrast agent on a 

pre-clinical cone-beam micro-CT scanner. The success of the DECT setup was 

demonstrated via the highly accurate automatic decomposition of Er-perfused rat 

hindlimbs into separate, distinct, and quantifiable 3D volumes of soft tissue, bone, and 

perfused vasculature. Statistical analysis of measurements from known pure areas 

(100 µm3) of soft tissue, bone, and perfused vessels within each decomposed volume 

revealed decomposition accuracies of > 98.5%. 

In Chapter 4, titled “Studying femoral- and tibial-subchondral bone and vascular changes 

using dual-energy micro-computed tomography in a surgically-induced rat hindlimb 

model of osteoarthritis”, the combination of an Er-based vascular perfusion contrast agent 

(Chapter 2) and optimized DECT (Chapter 3) were utilized for the simultaneous 

investigation into subchondral bone and microvessel density changes during the initiation 

and progression of OA. For this study we used rats that were divided into various time 

points (i.e. T = 0, 1, 2, 4, and 8 weeks post-operatively) and OA-surgery was performed 

solely on the right hindlimb. As a control, we utilized both a sham surgery and the 

contralateral (non-operated) hindlimb from each rat. Due to the avascular nature of 

cartilage (i.e. absence of blood vessels), we chose to study the microvessel network of the 

neighbouring distal femoral epiphysis and proximal tibial epiphysis. Due to the proximity 

of the chosen ROIs to cartilage, the microvessels within the ROIs may be responsible for 

delivering nutrients and oxygen to cartilage. Statistical analysis of microvessel volume 

fractions revealed a significant increase (p = 0.0472) in microvessel density within the 

ipsilateral tibia 1 – week post-operatively, in comparison to the contralateral hindlimb. 

This change in vessel density is most likely due to an acute inflammatory response and 

subsequent angiogenesis. 2 – weeks post-operatively, and till the end of the experiment, 

the microvessel density returned to baseline (i.e. 0 – week).  With regards to the 

subchondral bone and soft tissue, the inflammatory response did not significantly affect 

these tissues within the chosen ROIs for the entire duration of the study.  
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5.2 Future Directions 

The accumulation of results from the chapters presented within this thesis have 

demonstrated our ability to (1) produce customized elemental composition vascular 

contrast agent; (2) fabricate customized shape and composition x-ray filtration for 

element specific DECT; and (3) combine the previously mentioned techniques to 

simultaneously study subchondral bone and perfused microvessels within a rat hindlimb 

model of OA. While our accomplishments have been applied in the study of OA, the 

advancements achieved within each Chapter can be beneficially adapted for a wide range 

of applications and studies.  

5.2.1 Customized Contrast Agents 

We have demonstrated the capabilities of using Er as the basis of a vascular perfusion 

contrast agent (Chapter 2). An Er-based agent provides significantly higher x-ray contrast 

than commercially available contrast agents, and its absorption K-edge energy is 

optimally located for its use with DECT. Recent research, has adapted the base of our Er-

based contrast agent for in vivo experiments,24 facilitating the study of the same 

microvessel networks over time in response to various external challenges (i.e. induction 

of vascular-related diseases, angiogenic, anti-angiogenic drugs, etc). In addition to 

demonstrating the effectiveness of an Er-based contrast agent, the techniques 

implemented for the fabrication of our contrast agent can be applied to customizing a 

wide variety of contrast agents.  

Un-coated or un-treated nanopowders will tend to clump together due to van der Waals 

forces.25,26 However, in Chapter 2, we have shown that ultrasonic cavitation is effective 

in breaking down larger aggregates of nanoparticulate Er2O3 into nano-sized 

aggregates.27 Thus, the application of ultrasonic cavitations for the incorporation of 

nanoparticles within a media can lead to the fabrication of vascular contrast agents of 

customizable elemental compositions, concentrations, and carrier media.  

The ability to customize the vascular contrast agent may lead to the development of more 

multimodal imaging contrast agents.28 With respect to micro-CT, as high-energy (i.e. 

>120 kVp) x-ray scanners become more available, contrast agents of higher-Z elements 
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(i.e. higher electron density) would be more favourable29 for greater contrast (i.e. 

increased x-ray attenuation) within images. Furthermore, vascular contrast agents 

exhibiting higher-energy absorption K-edge energies can be advantageous for DECT, as 

the increased photon flux above and below the K-edge will require shorter scan times, 

and subsequently reduced x-ray dose.  

5.2.2 Customizable DECT 

The ability to customize the vascular perfusion contrast agent (Chapter 2) combined with 

our results from Chapter 3 (i.e. the fabrication of a large variety of custom sized, shape, 

and composition x-ray filters) opens the door for DECT to be customized for specific 

elements-of-interest. We provided the basic technique for the creation of a custom Er-

based x-ray filter using inexpensive materials and simple molding techniques. This 

process allows other researchers to craft custom shaped molds (i.e. cylindrical,30 wedge,31 

or bowtie filters32,33) to cast x-ray filters impregnated any element available in nano-

powder form – tailoring the output x-ray spectra of the micro-CT scanner to optimize 

contrast and DECT performance for any material-of-interest.  

In Chapter 3 we also presented a custom filter-exchanger that fit within the bore of the 

micro-CT scanner and allowed for the automated acquisition of DECT images – 

preventing the need to open and modify the x-ray scanner. Additionally, an automated 

co-registration software utilized fiducial marker beads surrounding the sample to provide 

sub-voxel co-registered DECT-acquired volumes. This method of co-registration allowed 

for the correction in inherent gantry motions and non-reproducible bed movements. 

Together, we provided an effective implementation of DECT on a large installed base of 

pre-clinical cone-beam micro-CT scanners.  

5.2.3 Vascular Disease Research 

In the previous Chapters, we have demonstrated the effectiveness of the combination of 

our Er-based contrast agent (Chapter 2) and automated DECT technique (Chapter 3) in 

facilitating the distinct segmentation, visualization, and highly specific quantification of 

the individual decomposed volumes of soft tissue, bone, and perfused vessels. The results 

from Chapter 2 and 3 facilitated the simultaneous visualization and quantification of 
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subchondral bone and microvessels in the distal femoral epiphysis and proximal tibial 

epiphysis of rats that have undergone an OA-induced surgery. Our results showed an 

acute inflammatory response 1 – week post-operatively that resulted in a significant 

increase (p = 0.0472) of microvessel density within the ipsilateral tibia, compared to the 

contralateral (non-operated) hindlimb. However, 2 – weeks post-operatively the 

microvessel density returned to and remained at baseline levels (i.e. 0 – week) for the 

remainder of the experimental timeframe. Thus, our results suggest that the microvessel 

density changes within the studied ROIs (i.e. distal femoral epiphysis and proximal tibial 

epiphysis) may not indicate substantial changes with the current OA model (i.e. ACLX + 

PMM). As mentioned in the discussion of limitations in Chapter 4, there is growing 

interest in the role of the synovial membrane with respect to the supply of oxygen and 

nutrients to articular cartilage. Some recent papers suggest that the majority of nutrients 

to cartilage is provided from the synovium.34-36 In this case, it would be of potential 

interest to apply our new DECT analytic technique to study concurrent changes in the 

vasculature of the synovium. In the present study, the synovium of rats was not analyzed, 

mainly due to the difficulty in defining a consistent 3D volume of interest within this 

complex structure. However, it is interesting to note that the data acquired in Chapter 4 

includes quantitative information about the vascular density within the synovium; this 

could be studied through retrospective analysis, using operator-defined synovial VOIs. 

We have performed some preliminary work in this regard, and Figure 5.1 shows a 

representative contour, 3D-generated VOI, and maximum-intensity projection through a 

vessel-only DECT-decomposed volume. This preliminary data demonstrates the highly 

vascularized synovial membrane, consistent with current theories about the role of the 

synovium in cartilage health and disease. All of the raw 3D images for each rat in this 

study have been digitally archived, facilitating a retrospective analysis of changes in 

synovial vascular density as part of a future study. 
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Figure 5.1: Results displaying the contouring process and resulting DECT-decomposed vessels 

of the synovium from a representative Er-perfused rat hindlimb. (A) An operator-generated 2D 

contour was iterated every 200 µm. (B) Interpolation of these 2D contours resulted in a 3D VOI. 

(C) A thick slice maximum intensity projection (MIP), representing the contour in (A), through 

the DECT-decomposed vessel-only volume displaying the highly vascularized synovium. (D) A 

maximum intensity projection through the entire 3D VOI (anterior – posterior). 
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Apart from our use of an Er-based contrast agent and DECT for the study of bone and 

vessel changes within a model of OA, the characterization and quantification of bone and 

vessels can be applicable to a large variety of vascular-related research: cardiac,37 

musculoskeletal,38,39 oncogenic,40 and neurological.41 To emphasize this strength of our 

novel technique, we sought out collaborations to study vascular changes within 

oncogenic and musculoskeletal diseases.  

Our first collaboration involved the investigation of tumour angiogenesis following 

treatment with an anti-vascular endothelial growth factor (VEGF) and within control (i.e. 

non-treated) tumours.42 The cancer cell line used within this study (i.e. MDA-MB-231-

D3H2-LNluc) can calcify and appear like bone within micro-CT scans. Our role in this 

collaboration was to provide a technique that would facilitate the visualization of 

microvessels even in the presence of tumour calcification. The application of our highly 

x-ray attenuating Er-based contrast agent and optimized DECT will provide the ability to 

distinguish between vessels permeating possible calcified regions of the tumour. The 

results of the our micro-CT scans revealed the entire perfused vascular system of a mouse 

(Figure 5.2A), the tumors encapsulating microvasculature (Figure 5.2B), and blood 

supply within the tumour mass (Figure 5.2C).42 
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Figure 5.2: Micro-CT results of a mouse and its associated tumour mass perfused with a custom 

Er-based vascular perfusion contrast agent. (A) Maximum intensity projection (MIP) 

demonstrating the perfusion of a whole mouse perfused with our Er-based contrast agent. (B) A 

segmented control tumour mass with a simple threshold isosurface to display its vascular 

encapsulation. (C) A segmented tumour mass treated with an anti-VEGF drug with a simple 

threshold isosurface displaying the affected vascular encapsulation. Taken and modified from 

Lowerison et al., 2017.42 
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In addition to studying angiogenesis within a tumour, we also had the opportunity to 

study the effects of vessel growth within the spine of genetically modified mice (CCN2-

deficient) that undergo accelerated age-related intervertebral disc degeneration (IVD) 

(Bedore et al., submitted 2017 to Scientific Reports). Our role in the collaboration was to 

examine the presence of vascular invasion into the IVDs of CCN2-deficient mice. Like 

cartilage, IVDs are an avascular tissue requiring nutrients and oxygen through diffusion 

from surrounding vascularized tissues. The proximity and known function of nearby 

endplates to provide nutrient and oxygen43 necessitated the need of our Er-based contrast 

agent and DECT to ensure the visualization of perfused vessels. However, in this case 

DECT was not required as vascular invasion into the IVDs originated from the spinal 

cord rather than the underlying bone (Figure 5.3). 
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Figure 5.3: Representative thick-slice (300 µm) maximum intensity projections (MIP) of a 

single-energy micro-CT scan displaying the (IVD) and adjacent spinal cord (SC). A control 

(left) and CCN2-deficient (right) mouse were perfused with our Er-based vascular perfusion 

contrast agent, vertebral body microvasculature and microvasculature adjacent to the IVD space 

(red arrows). No overt differences in vascularity were observed within the IVD space between 

both the control and CCN2-deficient mice, with microvasculature at the immediate periphery of 

the IVD space and absence of vasculature within the IVD space. Modified from data submitted 

as part of a manuscript (Bedore et al., 2017, Scientific Reports). 
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5.3 Summary 

In conclusion, this thesis has described the development and implementation of a new 

type of endogenous vascular contrast agent for ex vivo use with small-animal models. The 

contrast agent exhibits a number of advantageous properties, including the ability to 

perfuse the smallest vessels, high-contrast relative to other tissues and bone, and x-ray 

attenuation properties that are ideally suited to dual-energy CT on laboratory scanners. 

This new technique has been used in a study of vascular changes in a rat model of 

osteoarthritis, and has also been adopted quickly in collaborative studies of the 

vasculature near tumours and within the spine. The combination of the erbium-based 

contrast agent and dual-energy scanning facilitates the automated segmentation of vessels 

from other tissue types (including bone), providing a potentially powerful tool for future 

research involving the micro-vasculature of small-animal models. 
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Appendix A 

Additional Analysis for the Resuspension of a Two-Year Old 

Er-Based Vascular Perfusion Contrast Agent   

 

 

 

Figure A.1: DLS measurements of particle size distribution of a two-year old prepared Er-based 

suspension that was sonicated for either 5 or 10 minutes prior to measurement. 
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Appendix B 

Animal Ethics Approval 

 

 

2015-018::1: 

AUP Number: 2015-018 

AUP Title: TGFα/EGFR signaling in osteoarthritis 

Yearly Renewal Date: 07/01/2016 

The YEARLY RENEWAL to Animal Use Protocol (AUP) 2015-018 has been 

approved, and will be approved for one year following the above review 

date. 

1. This AUP number must be indicated when ordering animals for this 

project. 

2. Animals for other projects may not be ordered under this AUP number. 

3. Purchases of animals other than through this system must be cleared 

through the ACVS office. 

Health certificates will be required. 

REQUIREMENTS/COMMENTS 

Please ensure that individual(s) performing procedures on live animals, as described 

in this protocol, are familiar with the contents of this document. 

The holder of this Animal Use Protocol is responsible to ensure that all associated 

safety components (biosafety, radiation safety, general laboratory safety) comply 

with institutional safety standards and have received all necessary approvals. Please 

consult directly with your institutional safety officers. 

Submitted by: Kinchlea, Will D   

on behalf of the Animal Use Subcommittee 
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Appendix C 

Dual-Energy Computed Tomography Decomposition 

Algorithm Detailed Explanation 
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The implementation of dual-energy computed tomography (DECT) decompositions 

within this Ph.D. thesis has been previously outlined and described in greater detail by 

Granton et al., 2008. However, briefly, the decomposition algorithm relies on the solution 

of the following three equations:  

 

eq. 1   µSoft Tissue(HighE)⨍Soft Tissue + µBone(HighE)⨍Bone + µVessel(HighE)⨍Vessel = µHighE 

eq. 2  µSoft Tissue(LowE)⨍Soft Tissue + µBone(LowE)⨍Bone + µVessel(LowE)⨍Vessel = µLowE 

eq. 3         ⨍Soft Tissue +⨍Bone + ⨍Vessel = µHighE 

 

From eq. 1 and eq. 2, the observed attenuation coefficient recorded within each individual 

voxel in the acquired low- (µLowE) and high- (µHighE ) energy volumes is comprised of the 

fractional contribution of three materials of interest (i.e. ⨍Soft Tissue , ⨍Bone , and ⨍Vessel) and 

their respective attenuation coefficient at that acquired x-ray energy 

(i.e. µSoft Tissue(Low/HighE). µBone(Low/HighE), and µVessel(Low/HighE)). In eq. 3 we assume that a voxel 

can only be comprised of the fractional contribution from either soft tissue, bone, or 

vessel and that the sum of their fractional contribution must equal 1 (i.e. 100%). 

The µ values, within eq. 1 and eq. 2, for each tissue were acquired from the mean CT 

value in Hounsfield units (HU) from 500 × 500 × 500 µm regions-of-interest (ROI), in 

both low- and high-energy acquired volumes, from areas of pure soft tissue, bone, and 

vessel. The mean CT value was used, as this value is linearly proportional to the tissue’s 

respective attenuation coefficient. The initial six CT values (i.e. “seed values”) inputted 

into eq. 1 and 2 are highly dependent on known areas of pure tissues. Using improper 

seed values will result in non-ideal decompositions (i.e. misclassified voxels, Fig. 3.5 and 

3.8), visualized as components bleeding into one another (Fig. 3.7 and 3.9). To optimize 

the six seed values – resulting in a highly accurate decomposition – an iterative approach 

was taken.  

The initial six seed values were chosen by recording the mean value from 500 × 500 × 

500 µm ROIs within areas of known soft tissue (bicep femoris), bone (cortical bone), and 

vessel (femoral artery). Unfortunately, as Er-perfused microvessels are located 
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throughout the bicep femoris and cortical bone, the recorded CT values will be higher 

than expected. The resulting automatically decomposed volumes will contain many 

misclassified voxels. Thus, to further finetune the seed values and obtain more accurate 

CT values for non-vascularized soft tissue and bone, a mask for each tissue was 

generated for each decomposed volume. The separate “tissue masks” were obtained by 

choosing a threshold value within each decomposed volume above the value of tissues 

“bleeding” into that volume. A custom in-house Unix-based script would then provide a 

mean value of all the voxels within each decomposed value that was above the threshold 

value, providing a new seed value for said tissue component. This iterative approach was 

performed a max number of ten times for each tissue at both low- and high-energy until 

an ideal set of six seed values was obtained (Table 3.1), resulting in decomposed volumes 

of solely soft tissue, bone, and vessel were obtained (Fig. 3.4). Therefore, all that remains 

from eq. 1-3 are the voxel volume fractions of soft tissue, bone, and vessel (i.e.  ⨍Soft Tissue 

, ⨍Bone , and ⨍Vessel ). 

To determine the voxel volume fractions of each tissue, we employed a matrix 

factorization approach to solve a system of linear equations (i.e. eq. 1-3). The results of 

these calculations (performed for each voxel within the acquired low- and high-energy 

volumes), are individual volumes of the three materials-of-interest (i.e. soft tissue, bone, 

and vessel). Within each decomposed volume, greyscale values (0 – 10,000) of individual 

voxels represented the voxel volume fraction or percent contribution (0 – 100%) of said 

component to that specific voxel. Thus, the decomposition algorithm resulted in three 

tissue-distinct 3D volumes, where greyscale values represented the percent contribution 

of a tissue on a voxel. 
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